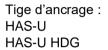


Résine d'injection Hilti HIT-RE 500 V4

Conception d'ancrage (EN 1992-4) / Tiges & Douilles / Béton

Système pour résine d'injection



Cartouche: HIT-RE 500 V4

(Disponible en cartouches de 330, 500 et 1400 ml)

Technologie SafeSet: Méthode simplifiée de préparation de trous de perçage à l'aide d'une mèche creuse Hilti pour le percage à percussion ou d'un outil de bouchardage pour des applications de carottage au diamant

Avantages

HAS-U A4 HAS-U HCR AM 8.8 (HDG)

(M8-M39)

- Convient pour le béton non fissuré et fissuré C 20/25 à C 50/60
- Grande capacité de charge
- Convient pour le béton sec et saturé d'eau
- Données techniques Hilti pour application sous l'eau
- Données techniques Hilti pour une durée de vie de 100 ans
- Haute résistance à la corrosion
- Long temps de travail à des températures élevées
- Durcit jusqu'à -5 °C
- Époxy inodore
- Non CMR au sens de la Classification selon le règlement (CE) N° 1272/2008

Douille taraudée : HIS-N HIS-RN (M8-M20)

Matériau de support

Béton (non fissuré)

Béton (fissuré)

Conditions de pose

Autres informations

Trous forés par percussion

Trous forés au diamant

Technologie SafeSet Hilti

Distance au bord et entraxe faibles

Profondeur d'implantation variable

Conditions de charge

Statique/ quasi statique

Sismique, ETE-C1, C2

Durée de vie 100 ans, données tech. Hilti

Évaluation Technique Européenne

Conformité CE

Résistance à la corrosion

Haute résistance à la corrosion 1)

Logiciel de calcul **PROFIS**

Homologations / Certificats

Description	Autorité / Laboratoire	N° / Date d'émission
Évaluation technique européenne ^{a)}	CSTB	ETE-20/0541/ 21-11-2020

Toutes les données indiquées dans cette section sont conformes à ETE-20/0541 du 21-11-2020 (sauf indication contraire).

Tiges à haute résistance à la corrosion (HCR) uniquement disponibles pour HAS-U.

Désignation	Contenu par cartouche	Conditionnement	Code article
HIT-RE 500 V4/330	330 ml	1	2287556
HIT-RE 500 V4/500	500 ml	1	2287557
HIT-RE 500 V4/1400	1400 ml	1	2287557

Résistance statique et quasi statique (pour une cheville simple)

Toutes les données présentées dans cette section s'appliquent aux conditions suivantes :

- Pose correcte (voir instructions de pose)
- Pas d'influence sur la distance au bord et l'entraxe
- Rupture de l'acier
- Tige d'ancrage HAS-U avec classe de résistance 5.8 et 8.8, tige d'ancrage AM avec classe de résistance 8.8, douille taraudée HIS-N avec vis 8.8
- Épaisseur du matériau de support et une profondeur d'implantation type, comme spécifié dans le tableau
- Béton C 20/25
- Durée de vie : 50 ans
- Plage de températures I : -40 °C à +40 °C (temp. min. du matériau de support -40 °C, température max. du matériau de support à long terme/court terme : +24 °C / 40 °C)
- Charge à court terme. Pour une charge à long terme, appliquer ψ_{sus} selon EN 1992-4
 Trous percés par percussion, trous percés par percussion avec une mèche creuse Hilti et trous carottés au diamant avec outil de bouchardage Hilti: ψ⁰_{sus} = 0,88; trous carottés au diamant: ψ⁰_{sus} = 0,89

Profondeur d'implantationa) et épaisseur du matériau de support

			ETE-20/0541 publiée le 21-11-2020								Données tech. Hilti		
Taille de cheville		M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	M39	
HAS-U													
Profondeur d'ancrage effective	[mm]	80	90	110	125	170	210	240	270	300	330	360	
Épaisseur du matériau de support	[mm]	110	120	140	161	214	266	300	340	374	410	444	
HIS-N													
Profondeur d'ancrage effective	[mm]	90	110	125	170	205	-	-	-	-	-	-	
Épaisseur du matériau de support	[mm]	120	150	170	230	270	-	-	-	-	-	-	

La plage autorisée de profondeur d'implantation est indiquée dans les paramètres de pose.

Pour des trous percés par percussion, des trous percés par percussion avec une mèche creuse $Hilti^{1)}$ et des trous carottés au diamant avec outil de bouchardage Hilti $TE-YRT^{2)}$:

Résistance nominale

				ET	E-20/05	41 pub	liée le 2	21-11-2	020		Donne	ées tec	n. Hilti
Taille de che	ville		M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	M39
Béton non fis	ssuré												
	HAS-U 5.8		12,0	19,3	28,0	45,8	72,7	99,8	122	146	142	164	187
	HAS-U 8.8, AM 8.8		19,3	28,0	37,8	45,8	72,7	99,8	122	146	142	164	187
Traction N _{Rd}	HAS-U A4	[kN]	13,9	21,9	31,6	45,8	72,7	99,8	80,4	98,3	121	143	171
	HAS-U HCR		19,3	28,0	37,8	45,8	72,7	99,8	122	146	142	164	187
	HIS-N 8.8		16,7	30,7	44,7	72,7	77,3	-	-	-	-	-	-
	HAS-U 5.8		7,2	12,0	16,8	31,2	48,8	70,4	92,0	112	139	163	195
0::	HAS-U 8.8, AM 8.8	_	12,0	18,4	27,2	50,4	78,4	113	147	179	222	262	312
Cisaillement V _{Rd}	HAS-U A4	[kN]	8,3	12,8	19,2	35,3	55,1	79,5	48,3	58,8	73,1	85,7	103
V Rd	HAS-U HCR		12,0	18,4	27,2	50,4	78,4	70,9	92,0	112	87,0	102	122
	HIS-N 8.8		10,4	18,4	27,2	50,4	46,4	-	-	-	-	-	-
Béton fissuré	•												
	HAS-U 5.8		10,1	17,0	26,5	32,1	50,9	69,9	85,4	102	-	-	-
	HAS-U 8.8, AM 8.8		10,1	17,0	26,5	32,1	50,9	69,9	85,4	102	-	-	-
Traction N _{Rd}	HAS-U A4	[kN]	10,1	17,0	26,5	32,1	50,9	69,9	80,4	98,3	-	-	-
	HAS-U HCR		10,1	17,0	26,5	32,1	50,9	69,9	85,4	102	-	ı	-
	HIS-N 8.8		16,7	26,5	32,1	50,9	67,4	-	-	-	-	ı	-
	HAS-U 5.8		7,2	12,0	16,8	31,2	48,8	70,4	92,0	112	-	-	-
0::	HAS-U 8.8, AM 8.8		12,0	18,4	27,2	50,4	78,4	113	147	179	-	-	-
Cisaillement V _{Rd}	HAS-U A4		8,3	12,8	19,2	35,3	55,1	79,5	48,3	58,8	-	1	-
• INU	HAS-U HCR	12,0	18,4	27,2	50,4	78,4	70,9	92,0	112	-	-	-	
	HIS-N 8.8		10,4	18,4	27,2	50,4	46,4	-	-	-	-	-	-

Mèche creuse Hilti disponible pour tailles d'éléments M12-M30.

Charges recommandées^{a)}

				ETI	E-20/05	41 pub	liée le 2	21-11-2	020		Données tech. Hilti		
Taille de chevi	lle		M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	M39
Béton non fiss	suré												
	HAS-U 5.8		8,6	13,8	20,0	32,7	51,9	71,3	87,1	104	101	117	133
	HAS-U 8.8, AM 8.8		13,8	20,0	27,0	32,7	51,9	71,3	87,1	104	101	117	133
Traction N _{Rec}	HAS-U A4	[kN]	9,9	15,7	22,5	32,7	51,9	71,3	57,4	70,2	86,7	102	122
	HAS-U HCR		13,8	20,0	27,0	32,7	51,9	71,3	87,1	104	101	117	133
	HIS-N 8.8		11,9	21,9	31,9	51,9	55,2	-	ı	1	-	ı	-
	HAS-U 5.8		5, 1	8,6	12,0	22,3	34,9	50,3	65,7	80,0	99,4	117	139
0::	HAS-U 8.8, AM 8.8		8,6	13,1	19,4	36,0	56,0	80,6	105	128	159	187	223
Cisaillement V _{Rec}	HAS-U A4	[kN]	6,0	9,2	13,7	25,2	39,4	56,8	34,5	42,0	52,2	61,2	73,2
V Rec	HAS-U HCR		8,6	13,1	19,4	36,0	56,0	50,6	65,7	80,0	62,1	72,9	87,1
	HIS-N 8.8		7,4	13,1	19,4	36,0	33,1	-	-	-	-	-	-
Béton fissuré	,												

²⁾ Les outils de bouchardage Hilti sont disponibles pour les tailles d'éléments M16-M30.

	HAS-U 5.8		7,2	12,1	18,9	22,9	36,3	49,9	61,0	72,7	-	-	-
	HAS-U 8.8, AM 8.8		7,2	12,1	18,9	22,9	36,3	49,9	61,0	72,7	-	-	-
Traction N _{Rec}	HAS-U A4	[kN]	7,2	12,1	18,9	22,9	36,3	49,9	57,4	70,2	-	-	-
	HAS-U HCR		7,2	12,1	18,9	22,9	36,3	49,9	61,0	72,7	ı	-	-
	HIS-N 8.8		11,9	18,9	22,9	36,3	48,1	ı	ı	ı	-	-	-
	HAS-U 5.8		5, 1	8,6	12,0	22,3	34,9	50,3	65,7	80,0	-	-	-
0::	HAS-U 8.8, AM 8.8		8,6	13,1	19,4	36,0	56,0	80,6	105	128	-	-	-
Cisaillement V _{Rec}	HAS-U A4	[kN]	6,0	9,2	13,7	25,2	39,4	56,8	34,5	42,0	ı	-	-
V Nec	HAS-U HCR		8,6	13,1	19,4	36,0	56,0	50,6	65,7	80,0	-	-	-
	HIS-N 8.8		7,4	13,1	19,4	36,0	33,1	-	-	-	1	-	-

Avec un coefficient de sécurité partiel global pour les actions γ=1,4. Les coefficients partiels de sécurité pour les actions dépendent du type de charge et doivent provenir des réglementations nationales.

Pour le forage au diamant :

Résistance nominale

					ETE-20	/0541 pub	liée le 21-	11-2020		
Taille de chev	ville		M8	M10	M12	M16	M20	M24	M27	M30
Béton non fis	suré									
	HAS-U 5.8		12,0	19,3	28,0	32,7	51,9	71,3	87,1	104
	HAS-U 8.8, AM 8.8		14,5	20,4	29,9	32,7	51,9	71,3	87,1	104
Traction N _{Rd}	HAS-U A4	[kN]	13,9	20,4	29,9	32,7	51,9	71,3	80,4	98,3
	HAS-U HCR		14,5	20,4	29,9	32,7	51,9	71,3	87,1	104
	HIS-N 8.8		16,7	24,4	32,7	51,9	68,8	-	-	-
	HAS-U 5.8		7,2	12,0	16,8	31,2	48,8	70,4	92,0	112
0: :11 /	HAS-U 8.8, AM 8.8		12,0	18,4	27,2	50,4	78,4	113	147	179
Cisaillement V _{Rd}	HAS-U A4	[kN]	8,3	12,8	19,2	35,3	55,1	79,5	48,3	58,8
V Ku	HAS-U HCR		12,0	18,4	27,2	50,4	78,4	70,9	92,0	112
	HIS-N 8.8		10,4	18,4	27,2	50,4	46,4	-	-	-

Charges recommandéesa)

					ETE-20	/0541 pub	liée le 21-	11-2020		
Taille de chev	ville		M8	M10	M12	M16	M20	M24	M27	M30
Béton non fis	suré									
	HAS-U 5.8		8,6	13,8	20,0	23,4	37,1	50,9	62,2	74,2
	HAS-U 8.8, AM 8.8		10,4	14,6	21,4	23,4	37,1	50,9	62,2	74,2
Traction N _{Rec}	HAS-U A4	[kN]	9,9	14,6	21,4	23,4	37,1	50,9	57,4	70,2
	HAS-U HCR		10,4	14,6	21,4	23,4	37,1	50,9	62,2	74,2
	HIS-N 8.8		11,9	17,5	23,4	37,1	49,1	-	-	-
	HAS-U 5.8		5, 1	8,6	12,0	22,3	34,9	50,3	65,7	80,0
0::	HAS-U 8.8, AM 8.8		8,6	13,1	19,4	36,0	56,0	80,6	105	128
Cisaillement V _{Rec}	HAS-U A4	[kN]	6,0	9,2	13,7	25,2	39,4	56,8	34,5	42,0
V 11.60	HAS-U HCR		8,6	13,1	19,4	36,0	56,0	50,6	65,7	80,0
	HIS-N 8.8		7,4	13,1	19,4	36,0	33,1	-	-	-

Avec un coefficient de sécurité partiel global pour les actions γ=1,4. Les coefficients partiels de sécurité pour les actions dépendent du type de charge et doivent provenir des réglementations nationales.

Résistance statique et quasi statique (pour une cheville simple)

Toutes les données présentées dans cette section s'appliquent aux conditions suivantes :

- Pose correcte (voir instructions de pose)
- Pas d'influence sur la distance au bord et l'entraxe
- Rupture de l'acier
- Tige d'ancrage HAS-U avec classe de résistance 5.8 et 8.8, tige d'ancrage AM avec classe de résistance 8.8, douille taraudée HIS-N avec vis 8.8
- Épaisseur du matériau de support et une profondeur d'implantation type, comme spécifié dans le tableau
- Béton C 20/25
- Durée de vie : 100 ans
- Plage de températures I : -40 °C à +40 °C (temp. min. du matériau de support -40 °C, température max. du matériau de support à long terme/court terme : +24 °C / 40 °C)
- Charge à court terme. Pour une charge à long terme, appliquer ysus selon EN 1992-4

Profondeur d'implantationa) et épaisseur du matériau de support

·				Do	nnées tec	hniques H	lilti		
Taille de cheville		M8	M10	M12	M16	M20	M24	M27	M30
HAS-U									
Profondeur d'ancrage effective	[mm]	80	90	110	125	170	210	240	270
Épaisseur du matériau de support	[mm]	110	120	140	161	214	266	300	340
HIS-N									
Profondeur d'ancrage effective	[mm]	90	110	125	170	205	-	-	-
Épaisseur du matériau de support	[mm]	120	150	170	230	270	-	-	-

La plage autorisée de profondeur d'implantation est indiquée dans les paramètres de pose.

Pour des trous percés par percussion, des trous percés par percussion avec une mèche creuse Hilti¹⁾ et des trous carottés au diamant avec outil de bouchardage Hilti²⁾:

Résistance nominale

Résistance	- I O I I I I I I I I I I I I I I I I I				D.	nnágo to a	hniques H	1:14:		
						nnées tec	1			
Taille de che	ville		M8	M10	M12	M16	M20	M24	M27	M30
Béton non fis	ssuré									
	HAS-U 5.8		12,0	19,3	28,0	45,8	72,7	99,8	122	146
	HAS-U 8.8, AM 8.8		19,3	28,0	37,8	45,8	72,7	99,8	122	146
Traction N _{Rd}	HAS-U A4	[kN]	13,9	21,9	31,6	45,8	72,7	99,8	80,4	98,3
	HAS-U HCR		19,3	28,0	37,8	45,8	72,7	99,8	122	146
	HIS-N 8.8		16,7	30,7	44,7	72,7	77,3	-	-	-
	HAS-U 5.8		7,2	12,0	16,8	31,2	48,8	70,4	92,0	112
0: :	HAS-U 8.8, AM 8.8		12,0	18,4	27,2	50,4	78,4	113	147	179
Cisaillement V _{Rd}	HAS-U A4	[kN]	8,3	12,8	19,2	35,3	55, 1	79,5	48,3	58,8
V Ku	HAS-U HCR		12,0	18,4	27,2	50,4	78,4	70,9	92,0	112
	HIS-N 8.8		10,4	18,4	27,2	50,4	46,4	-	-	-
Béton fissuré	•	,								
	HAS-U 5.8		7,4	12,3	19,4	27,2	46,3	63,3	74,6	93,3
	HAS-U 8.8, AM 8.8		7,4	12,3	19,4	27,2	46,3	63,3	74,6	93,3
Traction N _{Rd}	HAS-U A4	[kN]	7,4	12,3	19,4	27,2	46,3	63,3	74,6	93,3
	HAS-U HCR		7,4	12,3	19,4	27,2	46,3	63,3	74,6	93,3
	HIS-N 8.8		13,0	20,9	29,5	50,9	67,4	-	-	-
0: :11 :	HAS-U 5.8		7,2	12,0	16,8	31,2	48,8	70,4	92,0	112
Cisaillement V _{Rd}	HAS-U 8.8, AM 8.8	[kN]	12,0	18,4	27,2	50,4	78,4	113	147	179
V Ku	HAS-U A4		8,3	12,8	19,2	35,3	55, 1	79,5	48,3	58,8

HAS-U HCR	12,0	18,4	27,2	50,4	78,4	70,9	92,0	112
HIS-N 8.8	10,4	18,4	27,2	50,4	46,4	-	-	-

Mèche creuse Hilti disponible pour tailles d'éléments M12-M30.

Pour carottage au diamant :

Résistance nominale

INCOISIAITICE	Hommaic		1							
					Do	onnées tec	hniques H	Hilti		
Taille de che	ville		M8	M10	M12	M16	M20	M24	M27	M30
Béton non fis	ssuré			•					•	
	HAS-U 5.8		12,0	20,4	28,0	32,7	51,9	71,3	87,1	104
	HAS-U 8.8, AM 8.8	•	14,5	20,4	29,9	32,7	51,9	71,3	87,1	104
Traction N _{Rd}	HAS-U A4	[kN]	13,9	20,4	29,9	32,7	51,9	71,3	80,4	98,3
	HAS-U HCR	•	14,5	24,4	29,9	32,7	51,9	71,3	87,1	104
	HIS-N 8.8	•	16,7	12,0	32,7	51,9	68,8	-	-	-
	HAS-U 5.8		7,2	18,4	16,8	31,2	48,8	70,4	92,0	112
0: "	HAS-U 8.8, AM 8.8	•	12,0	12,8	27,2	50,4	78,4	113	147	179
Cisaillement V _{Rd}	HAS-U A4	[kN]	8,3	18,4	19,2	35,3	55,1	79,5	48,3	58,8
V Nu	HAS-U HCR	•	12,0	18,4	27,2	50,4	78,4	70,9	92,0	112
	HIS-N 8.8	•	10,4	18,4	27,2	50,4	46,4	-	-	-

Charges recommandéesa)

				Données techniques Hilti								
Taille de che	ville		M8	M10	M12	M16	M20	M24	M27	M30		
Béton non fis	ssuré											
	HAS-U 5.8		8,6	14,6	20,0	23,4	37,1	50,9	62,2	74,2		
	HAS-U 8.8, AM 8.8		10,4	14,6	21,4	23,4	37,1	50,9	62,2	74,2		
Traction N _{Rd}	HAS-U A4	[kN]	9,9	14,6	21,4	23,4	37,1	50,9	57,4	70,2		
	HAS-U HCR		10,4	17,5	21,4	23,4	37,1	50,9	62,2	74,2		
	HIS-N 8.8	•	11,9	8,6	23,4	37,1	49,1	-	-	-		
	HAS-U 5.8		5, 1	13,1	12,0	22,3	34,9	50,3	65,7	80,0		
O: ''' .	HAS-U 8.8, AM 8.8	•	8,6	9,2	19,4	36,0	56,0	80,6	105	128		
Cisaillement V _{Rd}	HAS-U A4	[kN]	6,0	13,1	13,7	25,2	39,4	56,8	34,5	42,0		
v Ku	HAS-U HCR		8,6	13,1	19,4	36,0	56,0	50,6	65,7	80,0		
	HIS-N 8.8		7,4		19,4	36,0	33,1	-	-	-		

a) Avec un coefficient de sécurité partiel global pour les actions γ=1,4. Les coefficients partiels de sécurité pour les actions dépendent du type de charge et doivent provenir des réglementations nationales.

Les outils de bouchardage Hilti sont disponibles pour les tailles d'éléments M16-M30

Résistance sismique (pour une cheville simple)

Toutes les données présentées dans cette section s'appliquent aux conditions suivantes :

- Pose correcte (voir instructions de pose)
- Pas d'influence sur la distance au bord et l'entraxe
- Rupture de l'acier
- Tige d'ancrage HAS-U avec classe de résistance 8.8, tige d'ancrage AM avec classe de résistance 8.8, douille taraudée HIS-N avec vis 8.8
- Épaisseur du matériau de support et une profondeur d'implantation type, comme spécifié dans le tableau
- Béton C 20/25
- Plage de températures I

(temp. min. du matériau de support -40 °C, température max. du matériau de support à long terme/court terme : +24 °C / 40 °C)

 $\alpha_{gap} = 1,0$ (en utilisant le set de colmatage sismique Hilti)

Profondeur d'implantation et épaisseur du matériau de support pour catégories sismiques C2^{a)} et C1

			ETE-20/0541 publiée le 21-11-2020								
Taille de cheville	Taille de cheville				M16	M20	M24	M27	M30		
HAS-U											
Profondeur d'ancrage eff.	[mm]	80	90	110	125	170	210	240	270		
Épaisseur du matériau de support	[mm]	110	120	140	161	214	266	300	340		
HIS-N											
Profondeur d'ancrage eff.	[mm]	90	110	125	170	205	-	-	-		
Épaisseur du matériau de support	[mm]	120	146	169	226	269	-	-	-		

^{a)} Homologation sismique C2 uniquement disponible pour tiges HAS-U.

Pour des trous percés par percussion et des trous percés par percussion avec une mèche creuse Hilti 1):

Mèche creuse Hilti disponible pour tailles d'éléments M12-M30.

Résistance nominale en cas de catégorie de performance sismique C2

		ETE-20/0541 publiée le 21-11-2020									
Taille de cheville			M8	M10	M12	M16	M20	M24	M27	M30	
Traction N _{Rd,seis}	HAS-U 8.8, AM 8.8	[kN]	-	-	9,1	27,2	41,3	63,3	67,9	88,2	
Cisaillement	HAS-U 8.8, AM 8.8 avec set de colmatage	_ [kN]	-	-	22,4	36,8	61,6	82,4	-	-	
V _{Rd,seis}	HAS-U 8.8, AM 8.8 sans set de	_, ,	-	-	19,2	32,0	56,8	72,0	96,8	108	

Pour des trous percés par percussion et des trous percés par percussion avec une mèche creuse Hilti 1):

Résistance nominale en cas de catégorie de performance sismique C1

ivesistance no	esistance nonlinale en cas de categorie de performance sistinque o i										
			ETE-20/0541 publiée le 21-11-2020								
Taille de chevil	le	M8	M10	M12	M16	M20	M24	M27	M30		
Tanadia a N	HAS-U 8.8, AM 8.8	[LAN]]	9,1	15,5	25,2	30,5	48,4	66,4	81,1	96,8	
Traction N _{Rd,seis}	HIS-N 8.8	– [kN]	16,7	25,2	30,5	48,4	64,0	-	-	-	
Cisaillement	HAS-U 8.8, AM 8.8	[[AJ]]	12,0	18,4	27,2	50,4	78,4	113	147	179	
$V_{\text{Rd,seis}}$	HIS-N 8.8	– [kN]	7,2	12,8	19,2	35,2	32,8	-	-	-	

¹⁾ Mèche creuse Hilti disponible pour tailles d'éléments M12-M30.

Matériaux

Propriétés mécaniques pour HAS-U

			ETE-20/0541 publiée le 21-11-2020									Données tech. Hilti		
Taille de chevil	le		M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	M39	
	HAS-U 5.8(F)		500	500	500	500	500	500	500	500	500	500	500	
Résistance à	HAS-U 8.8(F)	_'	800	800	800	800	800	800	800	800	800	800	800	
la traction	AM 8.8(HDG)	[N/mm²]	800	800	800	800	800	800	800	800	800	800	800	
nominale f _{uk}	HAS-U A4	- '	700	700	700	700	700	700	500	500	500	500	500	
	HAS-U HCR	- '	800	800	800	800	800	700	700	700	500	500	500	
	HAS-U 5.8(F)		400	400	400	400	400	400	400	400	400	400	400	
	HAS-U 8.8(F)		640	640	640	640	640	640	640	640	640	640	640	
Limite d'élasticité f _{vk}	AM 8.8(HDG)	[N/mm²]	640	640	640	640	640	640	640	640	640	640	640	
d clasticite tyk	HAS-U A4	- '	450	450	450	450	450	450	210	210	210	210	210	
	HAS-U HCR	- '	640	640	640	640	640	400	400	400	250	250	250	
Section transversale sou contrainte As	u: HAS-U AM 8.8	[mm²]	36,6	58,0	84,3	157	245	353	459	561	694	817	976	
Moment de résistance W	HAS-U AM 8.8	[mm³]	31,2	62,3	109	277	541	935	1387	1874	2579	3294	4301	

Propriétés mécaniques pour HIS-N

				ETE-20/0	541 publiée le 2	1-11-2020	
Taille de chevill	e		M8	M10	M12	M16	M20
	HIS-N		490	490	460	460	460
Résistance à la traction nominale f _{uk}	Vis 8.8	— — [N/mm²]	800	800	800	800	800
	HIS-RN	[14/11111-]	700	700	700	700	700
	Vis A4-70		700	700	700	700	700
	HIS-N		410	410	375	375	375
Limite	Vis 8.8	— — [N/mm²]	640	640	640	640	640
d'élasticité f _{yk}	HIS-RN	— [IN/IIIII1-]	350	350	350	350	350
	Vis A4-70		450	450	450	450	450
Section	HIS-(R)N		51,5	108	169	256	238
transversale sou contrainte A _s	Vis	[mm²]	36,6	58	84,3	157	245
Moment de	HIS-(R)N	[mm3]	145	430	840	1595	1543
résistance W	Vis	— [mm³]	31,2	62,3	109	277	541

Qualité du matériau pour HAS-U

Pièce	Matériau
Acier zingué	
Tige filetée, HAS-U 5.8 (HDG)	Classe de résistance 5.8 ; Allongement à la rupture A5 > 8 % ductile Acier électrozingué ≥ 5µm ; (F) galvanisé à chaud ≥ 50 µm
Tige filetée, HAS-U 8.8 (HDG)	Classe de résistance 8.8 ; Allongement à la rupture A5 > 12 % ductile Acier électrozingué ≥ 5µm ; (F) galvanisé à chaud ≥ 50 µm
Tige de mesure Hilti, AM 8.8 (HDG)	Classe de résistance 8.8 ; Allongement à la rupture A5 > 12 % ductile Acier électrozingué ≥ 5μm (HDG) galvanisé à chaud ≥ 50 μm
Rondelle	Acier électrozingué ≥ 5 μm, galvanisé à chaud ≥ 50 μm
Écrou	Classe de résistance de l'écrou adaptée à la classe de résistance de la tige filetée Acier électrozingué≥ 5μm, galvanisé à chaud ≥ 50 μm
Acier inoxydable	
Tige filetée, HAS-U A4	Classe de résistance 70 pour ≤ M24 et classe de résistance 50 pour > M24 ; Allongement à la rupture A5 > 8 % ductile Acier inoxydable 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362
Rondelle	Acier inoxydable 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014
Écrou	Acier inoxydable 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014
Acier à haute résistance à	la corrosion
Tige filetée, HAS-U HCR	Classe de résistance 80 pour ≤ M20 et classe de résistance 70 pour > M20, Allongement à la rupture A5 > 8 % ductile Acier à haute résistance à la corrosion 1.4529; 1.4565;
Rondelle	Acier à haute résistance à la corrosion 1.4529, 1.4565 EN 10088-1:2014
Écrou	Acier à haute résistance à la corrosion 1.4529, 1.4565 EN 10088-1:2014

Qualité du matériau pour HIS-N

	•	
Pièce		Matériau
HIS-N	Douille taraudée	Acier zingué 1.0718 ; acier galvanisé ≥ 5 μm
HIS-IN	Vis 8.8	Classe de résistance 8.8, A5 > 8 % ductile ; Acier galvanisé ≥ 5 µm
	Douille taraudée	Acier inoxydable 1.4401,1.4571
HIS-RN	Vis 70	Classe de résistance 70, A5 > 8 % ductile
	VIS 10	Acier inoxydable 1.4401; 1.4404, 1.4578; 1.4571; 1.4439; 1.4362

Informations de pose

Température de pose

-5 °C à +40 °C

Plage de températures d'utilisation

La résine d'injection Hilti HIT-RE 500 V4 peut être appliquée aux températures indiquées ci-dessous. Une température trop élevée du matériau de support peut affaiblir la résistance à la rupture du produit.

Plage de températures	Température du matériau de support	Température max. à long terme du matériau de support	Température max. à court terme du matériau de support
Plage de températures I	-40 °C à +40 °C	+24 °C	+40 °C
Plage de températures II	-40 °C à +55 °C	+43 °C	+55 °C
Plage de températures III	-40 °C à +75 °C	+55 °C	+75 °C

Température max. à court terme du matériau de support

Les températures élevées à court terme du matériau de support sont celles observées sur de brèves périodes de temps, par exemple au cours du cycle diurne.

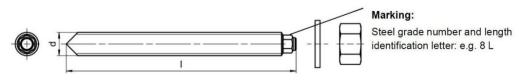
Température max. à long terme du matériau de support

Les températures élevées à long terme du matériau de support sont à peu près constantes sur des périodes de temps assez longues.

Temps de travail et temps de durcissement

Température du matériau de support T ²⁾	Temps de travail t _{work}	Temps de durcissement minimum t _{cure} 1)
-5 °C à -1 °C	2 h	168 h
0 °C à 4 °C	2 h	48 h
5 °C à 9 °C	2 h	24 h
10 °C à 14 °C	1,5 h	16 h
15 °C à 19 °C	1 h	12 h
20 °C à 24 °C	30 min	7 h
25 °C à 29 °C	20 min	6 h
30 °C à 34 °C	15 min	5 h
35 °C à 39 °C	12 min	4,5 h
40 °C	10 min	4 h

¹⁾ Les données concernant le temps de durcissement s'appliquent uniquement si le matériau de support est sec. S'il est humide, les temps de durcissement doivent être multipliés par deux.


Paramètres de pose pour HAS-U

				ET	E-98/05	41 pub	41 publiée le 21-11-2020					Données tech. Hilti		
Taille de cheville			M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	M39	
Diamètre nominal de la mèche	d ₀	[mm]	10	12	14	18	22	28	30	35	37	40	42	
Plage de profondeur	$h_{\text{ef},\text{min}}$	[mm]	60	60	70	80	90	96	108	120	132	144	156	
effective d'ancrage et de perçage ^{a)}	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600	660	720	780	
Épaisseur minimum du matériau de support	h _{min}	[mm]	2 100 mm											
Couple max. à la pose	max. T _{inst}	[Nm]	10	20	40	80	150	200	270	300	330	360	390	
Entraxe min.	S _{min}	[mm]	40	50	60	75	90	115	120	140	165	180	195	
Distance au bord min.	C _{min}	[mm]	40	45	45	50	55	60	75	80	165	180	195	
Entraxe critique pour rupture par fendage	S _{cr,sp}	[mm]						2 c _{cr,sp}						
Distance au bord critique			1,0) · h _{ef}	р	our h / l	h _{ef} ≥ 2,0)	h/h _{ef}					
pour rupture par fendage	C _{cr,sp}	[mm]	4,6 h	_{ef} - 1,8 h	pou	r 2,0 > h	n / h _{ef} >	1,3	1,3					
b)			2,2	26 h _{ef}	р	our h / l	h _{ef} ≤ 1,3			1,0	·h _{ef} 2,26·h	C _{cr,sp}		
Entraxe critique pour rupture par cône de béton	S _{cr,N}	[mm]												
Distance au bord critique pour rupture par cône de béton	C _{cr,N}	[mm]		() ,				1,5 h _{ef}						

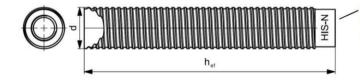
Pour un entraxe (distance au bord) inférieur à l'entraxe critique (distance au bord critique), les charges de calcul doivent être réduites.

HAS-U-...

²⁾ La température minimale de la cartouche est de +5 °C.

a) $h_{ef,min} \le h_{ef} \le h_{ef,max}$ (h_{ef} : profondeur d'implantation)

h : épaisseur du matériau de support (h ≥ h_{min})


Paramètres de pose pour HIS-N

				ETE-98/0	541 publiée le 2	1-11-2020	
Taille de cheville			M8	M10	M12	M16	M20
Diamètre nominal de la mèche	d ₀	[mm]	14	18	22	28	32
Diamètre de l'élément	d	[mm]	12,5	16,5	20,5	25,4	27,6
Profondeur effective d'ancrage et de perçage	h _{ef}	[mm]	90	110	125	170	205
Épaisseur min. du matériau	h _{min}	[mm]	120	150	170	230	270
Diamètre du trou de passage dans la pièce à fixer	df	[mm]	9	12	14	18	22
Longueur min-max d'engagement du filetage	hs	[mm]	8-20	10-25	12-30	16-40	20-50
Entraxe min.	S _{min}	[mm]	60	70	90	115	130
Distance au bord min.	C _{min}	[mm]	40	45	55	65	90
Entraxe critique pour rupture par fendage	S _{cr,sp}	[mm]			2 c _{cr,sp}		
Distance au bord critique			1,0 · hef	pour h / h _{ef}	≥ 2.0	2,0	
pour rupture par fendage	Ccr,sp	[mm]	4,6 h _{ef} – 1,8 h	pour 2,0 > h /	h _{ef} > 1,3	1,3	
·			2,26 h _{ef}	pour h / h _{ef}	≤ 1,3	1,0·h _{ef} 2	c _{cr,sp}
Entraxe critique pour rupture par cône de béton	S _{cr,N}	[mm]			2 C _{cr,N}		
Distance au bord critique pour rupture par cône de béton		[mm]			1,5 h _{ef}		
Couple max. à la pose	max. T _{inst}	[Nm]	10	20	40	80	150

Pour un entraxe (distance au bord) inférieur à l'entraxe critique (distance au bord critique), les charges de calcul doivent être réduites.

Internally threaded sleeve HIS-(R)N...

Marking: Identifying mark - HILTI and embossing "HIS-N" (for zinc coated steel) embossing "HIS-RN" (for stainless steel)

Équipement de pose

Equipernent de	pose										
Taille de cheville		M8	M10	M12	M16	M20	M24	M27	M30	M36	M39
Perforateur	HAS-U		TE 2 -	- TE 16				TE 40 -	- TE 80		
HIS-N TE 2 – TE 16 TE 40 – TE 80 -											
Autrop outile			Pistole	t à air con	nprimé, je	u de bros	ses de n	ettoyage,	pince d'in	jection	
Autres outils			outils de bouchardage TE-YRT								
Autres outils recommandés par	· Hilti			DD E	C-1, DD	100 DI	D 160			-	

 $h_{\text{ef,min}} \le h_{\text{ef}} \le h_{\text{ef,max}}$ (h_{ef} : profondeur d'implantation) h : épaisseur du matériau de support ($h \ge h_{\text{min}}$)

b)

Paramètres des outils de nettoyage et de pose

	s outils de liet		Diamètres de i	mèche d₀ [mm]		Po	se
		Doroouse è	Mèche	Carottage	au diamant		
HAS-U	HIS-N	Perceuse à percussion (HD)	creuse (HDB) ^{a)}	Carottage au diamant (DD)	avec outil de bouchardag e (RT)	Brosse HIT-RB	Piston HIT-SZ
mannana ja	DRUMANIAN			€	Nous ne pouvoto pas afficher l'image.		
M8	•	10	1	10	-	10	-
M10	-	12	-	12	-	12	12
M12	M8	14	14	14	-	14	14
M16	M10	18	18	18	18	18	18
M20	M12	22	22	22	22	22	22
M24	M16	28	28	28	28	28	28
M27	-	30	-	30	30	30	30
-	M20	32	32	32	32	32	32
M30	-	35	35	35	35	35	35
M33	-	37 ^{b)}	-	-	-	37 ^{b)}	37 ^{b)}
M36	-	40 ^{b)}	-	-	-	40 ^{b)}	40 ^{b)}
M39	-	42 ^{b)}	-	-	-	42 ^{b)}	42 ^{b)}

Composants associés pour l'utilisation de l'outil de bouchardage Hilti TE-YRT

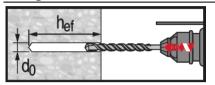
Carottage	au diamant	Outil de bouchardage TE-YRT	Jauge d'usure RTG
5	(b)		
d_0	[mm]	d [mm]	taille
nominal	mesuré	d ₀ [mm]	taille
18	17,9 à 18,2	18	18
20	19,9 à 20,2	20	20
22	21,9 à 22,2	22	22
25	24,9 à 25,2	25	25
28	27,9 à 28,2	28	28
30	29,9 à 30,2	30	30
32	31,9 à 32,2	32	32
35	34,9 à 35,2	35	35

Temps de bouchardage minimum $t_{roughen}$ ($t_{roughen}$ [sec] = h_{ef} [mm] /10)

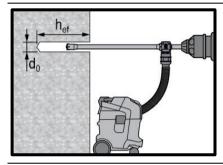
Tompo do bodonardago minimam trougnen (trougnen [coo] —e. [] / . > /
h _{ef} [mm]	troughen [sec]
0 à 100	10
101 à 200	20
201 à 300	30
301 à 400	40
401 à 500	50
501 à 600	60

Aucun nettoyage requis. Autres données techniques Hilti

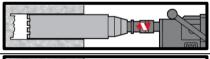
Instructions de pose


*Voir les instructions d'utilisation fournies avec l'emballage du produit pour des informations détaillées sur la pose.

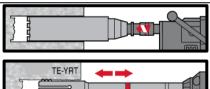
Règles de sécurité


Consultez la fiche de données de sécurité (FDS) avant utilisation pour une manipulation correcte et sans danger! Lorsque vous utilisez le Hilti HIT-RE 500 V4, portez des lunettes de protection parfaitement ajustées et des gants de protection.

Forage

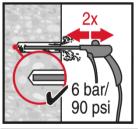

Trou percé par percussion

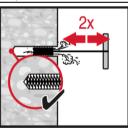
Pour béton sec et humide et pose dans des trous immergés (pas d'eau de mer).

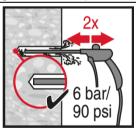

Trou percé par percussion avec mèche creuse Hilti (HDB)

Aucun nettoyage requis.
Pour béton sec et humide uniquement

Carottage au diamant

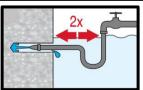

Pour béton sec et humide uniquement

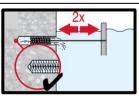


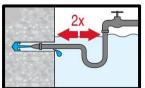

Carottage au diamant avec outil de bouchardage

Pour béton sec et humide uniquement Avant le bouchardage, le trou de perçage doit être sec.

Nettoyage (trou mal nettoyé = valeurs de charge médiocres.)

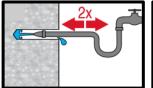


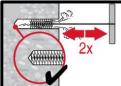


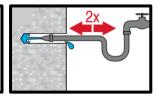


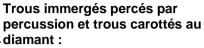
Perçage à percussion :

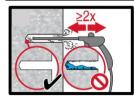
Nettoyage à air comprimé (CAC) pour tous les trous d'un diamètre do et d'une profondeur de perçage ho

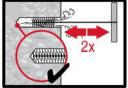


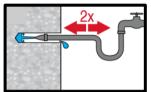

Perçage à percussion :

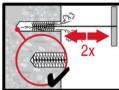

Nettoyage pour application sous l'eau :


Pour tous les trous d'un diamètre d_0 et d'une profondeur de perçage h_0 ..



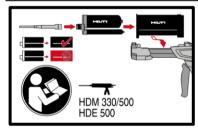


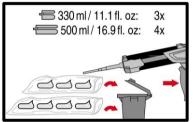




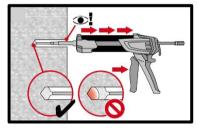


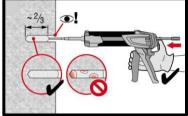
Pour tous les trous d'un diamètre d_0 et d'une profondeur de perçage h_0 ..

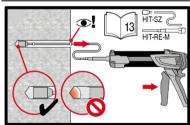


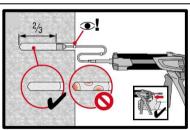


Trous carottés au diamant avec outil de bouchardage Hilti :

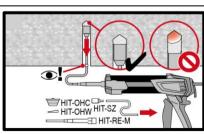

Pour tous les trous d'un diamètre d_0 et d'une profondeur de perçage h_0 ..

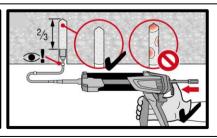

Préparation de l'injection


Préparation du système d'injection.



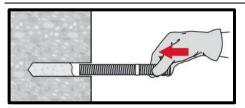
Méthode d'**injection** pour profondeur de perçage

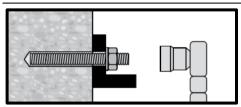

 $h_{ef} \le 250 \text{ mm}.$

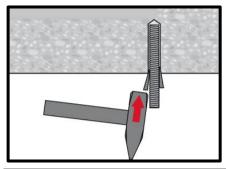


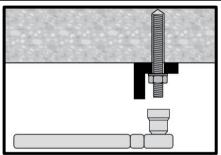
Méthode d'**injection** pour profondeur de perçage

 $h_{ef} > 250$ mm.




Méthode d'**injection** pour application au plafond.


Pose de l'élément


Pose de l'élément, respecter le temps de travail « t_{work} ».

Mise en charge de la cheville : une fois le temps de durcissement requis écoulé (tcure), vous pouvez mettre la cheville en charge. Le couple de serrage appliqué ne doit pas dépasser Tinst. max.

Pose de l'élément pour applications au plafond, respecter le temps de travail « twork »

Mise en charge de la cheville : une fois le temps de durcissement requis écoulé (tcure), vous pouvez mettre la cheville en charge. Le couple de serrage appliqué ne doit pas dépasser Tinst. max.

Résine d'injection Hilti HIT-RE 500 V4

Conception d'ancrage (EN 1992-4) / Éléments d'armature / Béton

Système pour résine d'injection

Cartouche: HIT-RE 500

(disponible en cartouches de 330, 500 et 1400 ml)

Avantages

- Technologie SafeSet : Méthode simplifiée de préparation de trous de perçage à l'aide d'une mèche creuse Hilti pour le perçage à percussion ou d'un outil de bouchardage pour des applications de carottage au diamant
- Convient pour le béton non fissuré ε fissuré C 20/25 à C 50/60
- Homologation ETE pour la catégori de performance sismique C1
- Données techniques Hilti pour une durée de vie de 100 ans
- Grande capacité de charge
- Convient pour le béton sec et saturé d'eau
- Données techniques Hilti pour application sous l'eau
- Long temps de travail pour permettre la pose de gros diamètres et/ou de grandes profondeurs d'implantation, même à des températures élevées
- Durcit jusqu'à -5 °C

Fer d'armature B500 $(\phi 8 - \phi 40)$

Matériau de support

Béton (non fissuré)

Béton (fissuré)

Béton sec

Béton humide

Statique/ quasi statique

Autres informations

Sismique, ETE-C1

Durée de vie 100 ans. données tech. Hilti

Conditions de pose

Percage à percussion

Carottage au diamant

Technologie SafeSet Hilti

Distance au bord et entraxe faibles

Évaluation Technique Européenne

Conformité CE

Logiciel de calcul PROFIS

Homologations / Certificats

Description	Autorité / Laboratoire	N° / Date d'émission
Évaluation technique européenne a)	CSTB, Marne la Vallée	ETE-20/0541 / 21-11-2020

Toutes les données indiquées dans cette section sont conformes à ETE-20/0541 21-11-2020 (sauf indication contraire).

Charge statique et quasi statique (pour une cheville simple)

Toutes les données présentées dans cette section s'appliquent aux conditions suivantes :

- Pose correcte (voir instructions de pose)
- Pas d'influence sur la distance au bord et l'entraxe
- Rupture de l'acier
- Fer d'armature B500
- Épaisseur du matériau de support et une profondeur d'implantation type, comme spécifié dans le tableau
- Béton C 20/25
- Durée de vie : 50 ans
- Plage de températures I : -40 °C à +40 °C (temp. min. du matériau de support -40 °C, température max. du matériau de support à long terme/court terme : +24 °C / 40 °C)
- Charge à court terme. Pour une charge à long terme, appliquer ψ_{sus} selon EN 1992-4
 Trous percés par percussion, trous percés par percussion avec une mèche creuse Hilti et trous carottés au diamant avec outil de bouchardage Hilti: ψ⁰_{sus} = 0,88; trous carottés au diamant: ψ⁰_{sus} = 0,89

Profondeur d'implantation et épaisseur du matériau de support pour données de charge statique et quasi statique

					Donnée Hi	es tech. ilti							
Taille de fer d'arma	ature	ф8	φ10	φ12	φ14	φ16	φ20	φ25	φ28	φ30	φ32	φ36	φ40
Profondeur d'impl. type	[mm]	80	90	110	125	125	170	210	270	270	300	330	360
Épaisseur mat. support	[mm]	110	120	142	161	165	220	274	340	344	380	420	470

Pour des trous percés par percussion, des trous percés par percussion avec une mèche creuse Hilti¹⁾ et des trous carottés au diamant avec outil de bouchardage Hilti TE-YRT²⁾ : Résistance nominale

			ETE-20/0541 publiée le 21-11-2020												
Taille de fer d'arm	ature	ф8	φ10	φ12	φ14	φ16	φ20	ф25	ф28	ф30	ф32	ф36	ф40		
Béton non fissuré									•						
Traction N _{Rd}	[LANI]	13,4	28,0	37,8	45,8	45,8	72,7	99,8	146	146	170	164	187		
Cisaillement V _{Rd}	[kN]	9,3	14,7	20,7	28,0	36,7	57,3	90,0	113	129	147	187	231		
Béton fissuré	,								,						
Traction N _{Rd}	[LAN]]	7,4	18,8	26,5	32,1	32,1	50,9	69,9	102	102	119	-	-		
Cisaillement V _{Rd}	[kN]	9,3	14,7	20,7	28,0	36,7	57,3	90,0	113	129	147	-	-		

⁾ Mèche creuse Hilti disponible pour tailles d'éléments φ10-φ28.

Charges recommandées^{a)}

			ETE-20/0541 publiée le 21-11-2020												
Taille de fer d'arma	ature	ф8	φ10	φ12	φ14	φ16	ф20	ф25	ф28	ф30	ф32	ф36	ф40		
Béton non fissuré															
Traction N _{rec}	[LAN]	9,6	20,0	27,0	32,7	32,7	51,9	71,3	104	104	122	117	133		
Cisaillement V _{rec}	[kN]	6,7	10,5	14,8	20,0	26,2	41	64,3	80,5	92,4	105	133	165		
Béton fissuré															
Traction N _{rec}	[LAJ]	5,3	13,5	18,9	22,9	22,9	36,3	49,9	72,7	72,7	85,2	-	-		
Cisaillement V _{rec}	[kN]	6,7	10,5	14,8	20,0	26,2	41	64,3	80,5	92,4	105	-	-		

a) Avec un coefficient de sécurité partiel global pour les actions γ=1,4. Les coefficients partiels de sécurité pour les actions dépendent du type de charge et doivent provenir des réglementations nationales.

²⁾ Les outils de bouchardage Hilti sont disponibles pour les tailles d'éléments φ14-φ28.

Pour des trous carottés au diamant :

Résistance nominale

			ETE-20/0541 publiée le 21-11-2020												
Taille de fer d'armature	9	ф8	φ10	φ12	φ14	φ16	φ20	φ25	ф28	ф30	φ32				
Béton non fissuré															
Traction N _{Rd}	·N 11	10,6	14,9	21,9	29,0	28,4	48,3	71,3	104	104	128				
Cisaillement V _{Rd}	(N)	9,3	14,7	20,7	28,0	36,7	57,3	90,0	113	129	147				

Charges recommandées^{a)}

			ETE-20/0541 publiée le 21-11-2020												
Taille de fer d'armatur	е	ф8	φ10	φ12	φ14	φ16	φ20	φ25	ф28	ф30	ф32				
Béton non fissuré															
Traction N _{krec}	LA II	7,6	10,7	15,6	20,7	20,3	34,5	50,9	74,2	74,2	86,9				
Cisaillement krec	kN]	6,7	10,5	14,8	20,0	26,2	41	64,3	80,5	92,4	105				

Avec un coefficient de sécurité partiel global pour les actions γ=1,4. Les coefficients partiels de sécurité pour les actions dépendent du type de charge et doivent provenir des réglementations nationales.

Résistance statique et quasi statique (pour une cheville simple)

Toutes les données présentées dans cette section s'appliquent aux conditions suivantes :

- Pose correcte (voir instructions de pose)
- Pas d'influence sur la distance au bord et l'entraxe
- Rupture de l'acier
- Fer d'armature B500
- Épaisseur du matériau de support et une profondeur d'implantation type, comme spécifié dans le tableau
- Béton C 20/25
- Durée de vie : 100 ans
- Plage de températures I : -40 °C à +40 °C (temp. min. du matériau de support -40 °C, température max. du matériau de support à long terme/court terme : +24 °C / 40 °C)
- Charge à court terme. Pour une charge à long terme, appliquer ψsus selon EN 1992-4.

Profondeur d'implantation et épaisseur du matériau de support pour données de charge statique et quasi statique

					Doi	Données techniques Hilti										
Taille de fer d'arma	ature	ф8	φ10	φ12	φ14	φ16	ф20	φ25	ф28	φ30	ф32					
Profondeur d'impl. type	[mm]	80	90	110	125	125	170	210	270	270	300					
Épaisseur mat. support	[mm]	110	120	142	161	165	220	274	340	344	380					

Pour des trous percés par percussion, des trous percés par percussion avec une mèche creuse Hilti¹⁾ et des trous carottés au diamant avec outil de bouchardage Hilti TE-YRT²⁾: Résistance nominale

					Do	nnées tec	hniques I	Hilti			
Taille de fer d'arm	ature	φ8	φ10	φ12	φ14	φ16	φ20	φ25	ф28	ф30	φ32
Béton non fissuré											
Traction N _{Rd}	[LAJ]	13,4	28,0	37,8	45,8	45,8	72,7	99,8	146	146	170
Cisaillement V _{Rd}	[kN]	9,3	14,7	20,7	28,0	36,7	57,3	90,0	113	129	147
Béton fissuré								•		•	
Traction N _{Rd}	[LAI]	3,4	14,1	22,1	29,3	32,1	50,9	69,9	102	102	119
Cisaillement V _{Rd}	[kN]	6,7	14,7	20,7	28,0	36,7	57,3	90,0	113	129	147

Mèche creuse Hilti disponible pour tailles d'éléments φ10-φ28.

²⁾ Les outils de bouchardage Hilti sont disponibles pour les tailles d'éléments \(\phi 14-\phi 28. \)

Charge recommandée^{a)}

			Données techniques Hilti												
Taille de fer d'armature		ф8	φ10	φ12	φ14	φ16	φ20	φ25	ф28	ф30	φ32				
Béton non fissuré															
Traction N _{rec}	[kN]	9,6	20,0	27,0	32,7	32,7	51,9	71,3	104	104	122				
Cisaillement V _{rec}	[KIN]	6,7	10,5	14,8	20,0	26,2	41	64,3	80,5	92,4	105				
Béton fissuré															
Traction N _{rec}	[LAN]]	2,4	10,1	15,8	20,9	22,9	36,3	49,9	72,7	72,7	85,2				
Cisaillement V _{rec}	[kN]	4,8	10,5	14,8	20,0	26,2	41	64,3	80,5	92,4	105				

a) Avec un coefficient de sécurité partiel global pour les actions γ=1,4. Les coefficients partiels de sécurité pour les actions dépendent du type de charge et doivent provenir des réglementations nationales.

Pour des trous carottés au diamant :

Résistance nominale

		Données techniques Hilti													
Taille de fer d'armature	ф8	φ10	φ12	φ14	φ16	φ20	φ25	ф28	ф30	ф32					
Béton non fissuré															
Traction N _{Rd}	10,1	14,1	20,7	27,5	26,9	45,8	70,7	104	104	122					
Cisaillement V _{Rd} [kN	9,3	14,7	20,7	28,0	36,7	57,3	90,0	113	129	147					

Charge recommandée^{a)}

			Données techniques Hilti												
Taille de fer d'armatu	re	ф8	φ10	φ12	φ14	φ16	φ20	φ25	ф28	ф30	ф32				
Béton non fissuré															
Traction N _{rec}	[LAI]	7,2	10,1	14,8	19,6	19,2	32,7	50,5	74,2	74,2	86,9				
Cisaillement V _{rec}	[kN]	6,7	10,5	14,8	20,0	26,2	41	64,3	80,5	92,4	105				

a) Avec un coefficient de sécurité partiel global pour les actions γ=1,4. Les coefficients partiels de sécurité pour les actions dépendent du type de charge et doivent provenir des réglementations nationales.

Charge sismique (pour une cheville simple)

Toutes les données présentées dans cette section s'appliquent aux conditions suivantes :

- Pose correcte (voir instructions de pose)
- Pas d'influence sur la distance au bord et l'entraxe
- Rupture de l'acier
- Fer d'armature B500
- Épaisseur du matériau de support et une profondeur d'implantation type, comme spécifié dans le tableau
- Béton C 20/25
- Plage de températures I (temp. min. du matériau de support -40 °C, température max. du matériau de support à long terme/court terme : +24 °C / 40 °C)
- $\alpha_{gap} = 1.0$

Profondeur d'implantation et épaisseur du matériau de support en cas de catégorie de performance sismique C1

	ETE-20/0541 publiée le 21-11-2020											
Taille de fer d'armature	ф8	φ10	φ12	φ14	φ16	ф20	ф25	ф28	ф30	ф32		
Profondeur d'implantation type [mm]	-	90	110	125	125	170	210	270	270	300		
Épaisseur du matériau de support [mm]	1	120	142	161	165	220	274	340	344	380		

Pour des trous percés par percussion, des trous percés par percussion avec une mèche creuse Hilti¹⁾ et des trous carottés au diamant avec outil de bouchardage Hilti TE-YRT²⁾:

Résistance nominale en cas de catégorie de performance sismique C1

		ETE-20/0541 publiée le 21-11-2020										
Taille de fer d'armature	ф8	φ10	φ12	φ14	φ16	ф20	ф25	ф28	ф30	ф32		
Traction N _{Rd,seis} [kN	-	17,2	25,2	30,5	30,5	48,4	66,4	96,8	96,8	113		
Cisaillement V _{Rd,seis}	-	10,0	14,7	19,3	26,0	40,0	63,3	78,7	90,7	103		

Mèche creuse Hilti disponible pour tailles d'éléments φ10-φ28.

²⁾ Les outils de bouchardage sont disponibles pour les tailles d'éléments φ14-φ28.

Matériaux

Propriétés mécaniques

Taille de fer d'armature		ф8	φ10	φ12	φ14	ф16	ф20	ф25	ф28	ф30	ф32	ф36	φ40
Résistance à la traction nominale f _{uk}	[N/mm²]	550	550	550	550	550	550	550	550	550	550	550	550
Limite d'élasticité f _{yk}	[N/mm²]	500	500	500	500	500	500	500	500	500	500	500	500
Section transversale sous contrainte A _s	[mm²]	50,3	78,5	113	154	201	314	491	616	707	804	1018	1257
Moment de résistance W	[mm³]	50,3	98,2	170	269	402	785	1534	2155	2650	3217	4580	6283

Qualité du matériau

Pièce	Matériau
Fers d'armature EN 1992-1-1:2004 et AC :2010	Barres et tiges redressées de classe B ou C avec f_{yk} et k selon les NDP ou NCL de la norme EN 1992-1-1/ NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$

Informations de pose

Plage de températures de pose :

-5 °C à +40 °C

Plage de températures d'utilisation

La résine d'injection Hilti HIT-RE 500 V4 peut être appliquée aux températures indiquées ci-dessous. Une température trop élevée du matériau de support peut affaiblir la résistance à la rupture du produit.

Plage de températures	Température du matériau de support	Température max. à long terme du matériau de support	Température max. à court terme du matériau de support
Plage de températures I	-40 °C à +40 °C	+24 °C	+40 °C
Plage de températures II	-40 °C à +55 °C	+43 °C	+55 °C
Plage de températures III	-40 °C à +75 °C	+55 °C	+75 °C

Température max. à court terme du matériau de support

Les températures élevées à court terme du matériau de support sont celles observées sur de brèves périodes de temps, par exemple au cours du cycle diurne.

Température max. à long terme du matériau de support

Les températures élevées à long terme du matériau de support sont à peu près constantes sur des périodes de temps assez longues.

Temps de travail et temps de durcissement

Température du matériau de support T ²⁾	Temps de travail max. pendant lequel les fers d'armature peuvent être insérés et ajustés t _{gel}	Temps de durcissement min. avant de pouvoir charger complètement les fers d'armature t _{cure} 1)
-5 °C ≤ T_{BM} < -1 °C	2 h	168 h
$0~^{\circ}C \leq T_{BM} < 4~^{\circ}C$	2 h	48 h
$5~^{\circ}C \leq T_{BM} < 9~^{\circ}C$	2 h	24 h
$10~^{\circ}C \leq T_{BM} < 14~^{\circ}C$	1,5 h	16 h
15 °C ≤ T _{BM} < 19 °C	1 h	12 h
$20~^{\circ}C \le T_{BM} < 24~^{\circ}C$	30 min	7 h
25 °C ≤ T _{BM} < 29 °C	20 min	6 h
30 °C ≤ T _{BM} < 34 °C	15 min	5 h
$35~^{\circ}C \le T_{BM} < 39~^{\circ}C$	12 min	4,5 h
T _{BM} = 40 °C	10 min	4 h

Les données concernant le temps de durcissement s'appliquent uniquement si le matériau de support est sec. S'il est humide, les temps de durcissement doivent être multipliés par deux.

²⁾ La température minimale de la cartouche est de +5 °C.

Paramètres de pose

				ETE-20/0541 publiée le 21-11-2020									Données tech. Hilti		
Taille de fer d'arma	ture		ф8	φ10	φ′	12	φ14	φ16	φ20	ф25	ф28	ф30	ф32	ф36	φ40
Diamètre nominal de la mèche	d ₀	[mm]	10 12 ^{a)}	12 14 ^{a)}	14 ^{a)}	16 ^{a)}	18	20	25	30 32 ^{a)}	35	37	40	45	55
Plage de profondeur	h _{ef,min}	[mm]	60	60	70	70	75	80	90	100	112	120	128	144	160
effective d'ancrage	$h_{\text{ef},\text{max}}$	[mm]	160	200	240	240	280	320	400	500	560	600	640	720	800
Épaisseur min. du matériau de	h _{min}	[mm]		hef +30mm ≥ 100 mm											
Entraxe min.	Smin	[mm]	40	50	60	60	70	80	100	125	140	150	160	180	200
Distance au bord	C _{min}	[mm]	40	45	45	45	50	50	65	70	75	80	80	180	200
Entraxe critique pour rupture par fendage	Scr,sp	[mm]	2 Ccr,sp												
Distance au bord				1,0 ł	1 ef		pour h	n / h _{ef} ≥	2,0		h/h _{ef}				
critique pour rupture par fendage	C _{cr,sp}	[mm]	4	,6 h _{ef} -	1,8 h	p	our 2,0	> h / h	_{ef} > 1,3	_	1,3				
c)				2,26	h _{ef}		pour h	n / h _{ef} ≤	1,3	_	_	1,0	h _{ef} 2,26	c _{cr,sp}	
Entraxe critique pour rupture par cône de béton	Scr,N	[mm]							2 C _{cr,I}	N					
Distance au bord critique pour rupture par cône de béton	C _{cr,N}	[mm]		1,5 h _{ef}											

Pour un entraxe (distance au bord) inférieur à l'entraxe critique (distance au bord critique), les charges de calcul doivent être réduites.

- Les deux valeurs données pour le diamètre de mèche peuvent être utilisées $h_{\text{ef,min}} \leq h_{\text{ef}} \leq h_{\text{ef,max}}$ (h_{ef} : profondeur d'implantation) h: épaisseur du matériau de support ($h \geq h_{\text{min}}$)

Taille de fer d'armature	ф8	φ10	ф12	φ14	φ16	ф20	ф25	ф28	ф30	ф32	ф36	ф40
Perforateur	TE 2 (-A) – TE 40(-A) TE40 – TE80											
Outils pour carottage au diamant	DD EC-1, DD 100 DD 160 -											
Autres outils	Pistolet à air comprimé, brosse, mèche creuse, outil de bouchardage, pince d'injection, piston											

Diamètres de forage et de nettoyage

			Carottage a	au diamant	_	
Taille de fer d'armature	Perceuse à percussion (HD)	Mèche creuse (HDB) ^{c)}	Carottage au diamant (DD)	avec outil de bouchardage (RT)	Brosse HIT-RB	Piston HIT-SZ
		d₀ [mm]		taille	[mm]
			€ 🕒 🗲			
ф8	12 (10 ^{a)})	-	12 (10 a))	-	12 (10 a))	12
φ10	14 (12 ^{a)})	14	14 (12 a))	-	14 (12 ^{a)})	14 (12 a))
φ12	16 (14 ^{a)})	16 (14 ^{a)})	16 (14 a))	-	16 (14 ^{a)})	16 (14 ^{a)})
ф14	18	18	18	18	18	18
ф16	20	20	20	20	20	20
ф20	25	25	25	25	25	25
ф25	32	32	32	32	32	32
ф28	35	35	35	35	35	35
ф30	37	-	37	-	37	37
122	40	-	-	-	40	40
ф32	-	-	42	-	42	42
ф36	45 ^{b)}	-	-	-	45 ^{b)}	45 ^{b)}
ф40	55 ^{b)}	-	-	-	55 ^{b)}	55 ^{b)}

a) Il est possible d'utiliser les deux valeurs

Composants associés pour l'utilisation de l'outil de bouchardage Hilti TE-YRT

Carottage	au diamant	Outil de bouchardage TE-YRT	Jauge d'usure RTG
	()	—	0
d_0	[mm]	d₀ [mm]	taille
nominal	mesuré	ا المال	taille
18	17,9 à 18,2	18	18
20	19,9 à 20,2	20	20
22	21,9 à 22,2	22	22
25	24,9 à 25,2	25	25
28	27,9 à 28,2	28	28
30	29,9 à 30,2	30	30
32	31,9 à 32,2	32	32
35	34,9 à 35,2	35	35

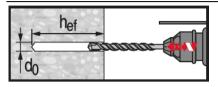
Temps de bouchardage minimum $t_{roughen}$ ($t_{roughen}$ [sec] = h_{ef} [mm] /10)

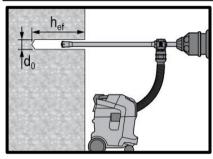
h _{ef} [mm]	troughen [SeC]
0 à 100	10
101 à 200	20
201 à 300	30
301 à 400	40
401 à 500	50
501 à 600	60

b) Autres données techniques Hilti.

c) Aucun nettoyage requis.

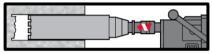
Instructions de pose


*Voir les instructions d'utilisation fournies avec l'emballage du produit pour des informations détaillées sur la pose.

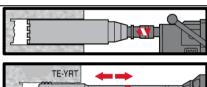

Règles de sécurité.

Consultez la fiche de données de sécurité (FDS) avant utilisation pour une manipulation correcte et sans danger! Lorsque vous utilisez le Hilti HIT-RE 500 V4, portez des lunettes de protection parfaitement ajustées et des gants de protection.

Forage



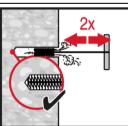
Trou percé par percussion

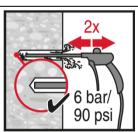


Trou percé par percussion avec mèche creuse Hilti (HDB)

Aucun nettoyage requis

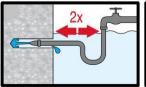
Carottage au diamant

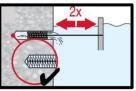


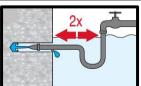

Carottage au diamant avec outil de bouchardage

Pour béton sec et humide uniquement Avant le bouchardage, le trou de perçage doit être sec.

Nettoyage (trou mal nettoyé = valeurs de charge médiocres.)

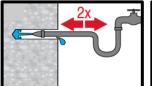


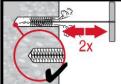


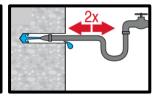


Perçage à percussion :

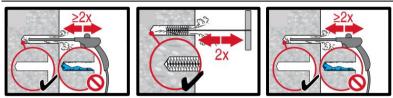
Nettoyage à air comprimé (CAC) pour des trous d'un diamètre d₀ et d'une profondeur de perçage h₀

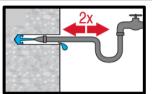


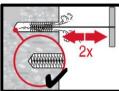

Perçage à percussion :

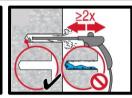

Nettoyage pour application sous l'eau :

Pour tous les trous d'un diamètre d_0 et d'une profondeur de perçage h_0 ..

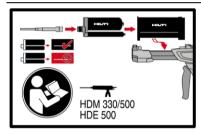


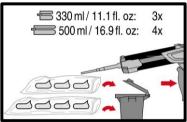




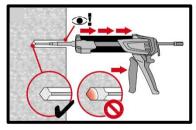

Trous immergés percés par percussion et trous carottés au diamant :

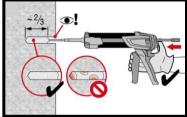
Pour tous les trous d'un diamètre d_0 et d'une profondeur de perçage h_0 ..

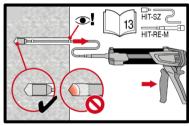


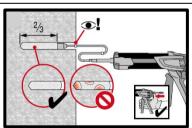


Trous carottés au diamant avec outil de bouchardage Hilti :

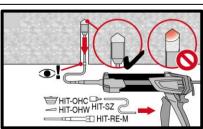

Pour tous les trous d'un diamètre d_0 et d'une profondeur de perçage h_0 ..

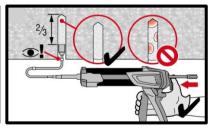

Préparation de l'injection


Préparation du système d'injection.



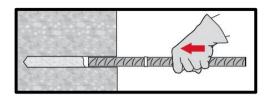
Méthode d'**injection** pour profondeur de perçage

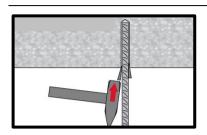

 $h_{ef} \le 250 \text{ mm}.$



Méthode d'**injection** pour profondeur de perçage

 $h_{ef} > 250$ mm.




Méthode d'**injection** pour application au plafond.

Pose de l'élément

Pose de l'élément, respecter le temps de travail « t_{work} ».

Pose de l'élément pour applications au plafond, respecter le temps de travail « twork ».

Mise en charge de la cheville : Vous pouvez mettre la cheville en charge une fois le temps de durcissement requis écoulé t_{cure} .

Résine d'injection Hilti HIT-RE 500 V4

Conception des fers d'armature (EN 1992-1-1, méthode HIT Rebar, EOTA TR 069) / Éléments d'armature / Béton

Système pour résine d'injection

Cartouche: HIT-RE 500

(disponible en cartouches de 330, 500 et 1400 ml)

Avantages

- Technologie SafeSet : Méthode simplifiée de préparation de trous de perçage à l'aide d'une mèche creuse Hilti pour le perçage à percussion ou d'un outil de bouchardage pour des applications de carottage au diamant
- Permet de calculer des liaisons en béton armé rigides, installées a posteriori, dans des conditions de charge statique sans utiliser une configuration de jonction conformément à TR 069
- Convient pour le béton C 12/15 à C 50/60
- Données ETE pour durée de vie de 100 ans
- Grande capacité de charge
- Convient pour le béton sec et saturé d'eau
- Non corrosif pour les éléments d'armature
- Long temps de travail à des températures élevées
- Durcit jusqu'à -5 °C
- Époxy inodore

Matériau de support

Béton (non fissuré)

Béton (fissuré)

Béton sec

Béton humide

Conditions de charge

Autres informations

Fer d'armature

(68 - 640)

Statique/ quasi statique

Sismique*

Résistance au feu

Durée de vie 100 ans, ETE

Conditions de pose

Perçage à C

Carottage au diamant

Technologie SafeSet Hilti

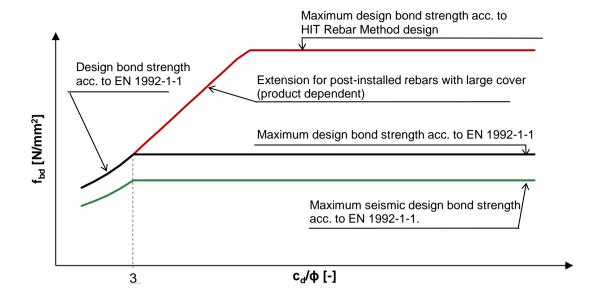
Évaluation Technique Européenne

Conformité CE

Logiciel de calcul PROFIS Rebar

Homologations / Certificats

Description	Autorité / Laboratoire	N° / Date d'émission
Évaluation technique européenne a)	CSTB, Marne la Vallée	ETE-20/0539 / 09-07-2021
Évaluation Technique Européenne	CSTB, Marne la Vallée	ETE-20/0540 / 09-07-2021


a) Toutes les données indiquées dans cette section sont conformes à ETE-20/0539 publiée le 09-07-2021 (sauf indication contraire).

^{*}uniquement pour le calcul EN 1992-1-1

Toutes les données indiquées dans cette section sont conformes à ETE-20/0540 publiée le 09-07-2021 (sauf indication contraire).

Charge statique et quasi statique

Limitation effective de la contrainte d'adhérence pour fers d'armature installés a posteriori au moyen de systèmes pour résine d'injection Hilti et valeurs nominales de résistance de liaison selon EN 1992-1-1 et la méthode HIT Rebar.

Calcul statique selon EN 1992-1-1 (petite couverture de béton)

Résistance de liaison nominale en N/mm² dans de bonnes conditions de liaison pour une durée de vie de 50 et 100 ans¹)

Pour des trous percés par percussion, des trous percés par percussion avec une mèche creuse Hilti²⁾ et des trous carottés au diamant avec outil de bouchardage Hilti TE-YRT³⁾:

Taille de fee		ETE 20/0540 publiée le 09-07-2021													
Taille de fer d'armature		Classe de béton													
a armatare	C12/15	C12/15 C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55													
φ8 - φ32	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3						
ф34	1,6	2,0	2,3	2,6	2,9	3,3	3,6	3,9	4,2						
ф36	1,6	1,9	2,2	2,6	2,9	3,2	3,5	3,8	4,1						
φ40	1,5	1,8	2,1	2,5	2,8	3,1	3,4	3,7	3,9						

Pour de mauvaises conditions de liaison, multipliez les valeurs par 0,7.

Pour des trous carottés au diamant (humide) :

Taille de fee		ETE 20/0540 publiée le 09-07-2021													
Taille de fer d'armature				CI	asse de bét	on									
a armatare	C12/15	C12/15 C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/0													
φ8 - φ12	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,0						
φ14 - φ 16	1,6	2,0	2,3	2,7	3,0	3,4	3,7	3,7	3,7						
φ18 - φ32	1,6	2,0	2,3	2,7	3,0	3,4	3,4	3,4	3,4						
ф34	1,6	2,0	2,3	2,6	2,9	3,3	3,3	3,3	3,3						
ф36	1,6	1,9	2,2	2,6	2,9	3,2	3,2	3,2	3,2						
φ40	1,5	1,8	2,1	2,5	2,8	2,8	2,8	2,8	2,8						

Pour de mauvaises conditions de liaison, multipliez les valeurs par 0,7.

²⁾ Mèche creuse Hilti disponible pour tailles d'éléments φ10-φ28.

³⁾ Les outils de bouchardage sont disponibles pour les tailles d'éléments φ14-φ28.

Facteurs d'augmentation dans le béton

					ETE	20/054	40 pub	liée le	09-07-	2021			
Méthode de perçage	Classe de béton					Taille	de fer	d'arm	ature				
		ф8	ф10	φ12	φ14	φ16	φ20	φ25	φ28	ф30	ф32	ф36	φ40
Trous forés par percussion	C30/37						1,	04					
Trous forés par	C40/50		1,07										
percussion avec mèche creuse Trous carottés au diamant	C50/60						1,	09					
Trous carottés au diamant avec outil de bouchardage	C30/37 - C50/60		-					1,0					-

Longueur d'ancrage minimum et longueur de chevauchement minimum

La longueur d'ancrage minimum $\ell_{b,min}$ et la longueur de chevauchement minimum $\ell_{0,min}$ selon la norme EN 1992-1-1 doivent être multipliées par le **facteur d'amplification** α_{lb} approprié, indiqué dans le tableau ci-dessous.

Facteur d'amplification α_{lb} pour la longueur d'ancrage min. et la longueur de chevauchement min. :

Trous percés par percussion, des trous percés par percussion avec une mèche creuse Hilti¹⁾ et trous carottés au diamant avec outil de bouchardage Hilti TE-YRT²⁾

		ETE 20/0540 publiée le 09-07-2021										
Taille de fer d'armature	Classe de béton											
	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60			
φ8 - φ40		•		•	1,0							

Mèche creuse Hilti disponible pour tailles d'éléments φ10-φ28.

Trous carottés au diamant (humide)

	Trous du diamant (namas)														
				E	TE 20/0540) publiée le	9 09-07-202	<u>!</u> 1							
Taille de fe	r d'armature				Cla	asse de bét	ton								
		C12/15	12/15 C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60												
ф8 -	· φ12		1,0												
φ14	- φ36			Inte	erpolation li	néaire entre	les diamè	tres							
ф	40	1,0													

²⁾ Les outils de bouchardage sont disponibles pour les tailles d'éléments φ14-φ28.

Calcul statique selon méthode HIT Rebar (grande couverture de béton)

Résistance nominale à l'arrachement [$f_{bd,po} = \tau_{Rk,ucr}/\gamma_{Mp}$] en N/mm² dans de bonnes conditions de liaison pendant 50 ans¹⁾²⁾

Pour des trous percés par percussion, des trous percés par percussion avec une mèche creuse Hilti³⁾ et des trous carottés au diamant avec outil de bouchardage Hilti TE-YRT⁴⁾:

Taille de fer d'armature	ф8	φ10	φ12	φ14	φ16	ф20	φ25	ф28	ф30	ф32	ф36	φ40
Béton non fissuré C20/25	6,7	10,0	10,0	10,0	10,0	9,3	9,3	9,3	8,7	8,7	6,1	5,6
Béton fissuré C20/25	3,7	6,7	8,0	8,0	8,0	8,0	7,3	7,3	7,3	7,3	-	-

Pour de mauvaises conditions de liaison, multipliez les valeurs par 0,7.

Pour des trous carottés au diamant :

Taille de fer d'armature	ф8	φ10	φ12	φ14	φ16	φ20	φ25	ф28	ф30	ф32	ф36	φ40
Béton non fissuré C20/25	5,3	5,3	5,3	5,3	4,5	4,5	4,5	4,8	4,8	4,8	-	-
Béton fissuré C20/25	-	-	-	-	-	-	-	-	-	-	-	-

Pour de mauvaises conditions de liaison, multipliez les valeurs par 0,7.

Résistance nominale à l'arrachement [$f_{bd,po} = \tau_{Rk,ucr}/\gamma_{Mp}$] en N/mm² dans de bonnes conditions de liaison pendant 100 ans¹⁾²⁾

Pour des trous percés par percussion, des trous percés par percussion avec une mèche creuse Hilti³⁾ et des trous carottés au diamant avec outil de bouchardage Hilti TE-YRT⁴⁾:

Taille de fer d'armature	ф8	φ10	φ12	φ14	φ16	φ20	φ25	ф28	ф30	ф32
Béton non fissuré C20/25	6,7	10,0	10,0	10,0	10,0	9,3	9,3	9,3	8,7	8,7
Béton fissuré C20/25	1,7	5,0	5,3	5,3	5,3	5,0	5,0	5,0	4,7	4,7

Pour de mauvaises conditions de liaison, multipliez les valeurs par 0,7.

Pour des trous carottés au diamant :

Taille de fer d'armature	ф8	φ10	φ12	φ14	φ16	φ20	φ25	ф28	ф30	ф32
Béton non fissuré C20/25	5,0	5,0	5,0	5,0	4,3	4,3	4,3	4,5	4,5	4,5
Béton fissuré C20/25	-	-	-	-	-	-	-	-	-	-

¹⁾ Pour de mauvaises conditions de liaison, multipliez les valeurs par 0,7.

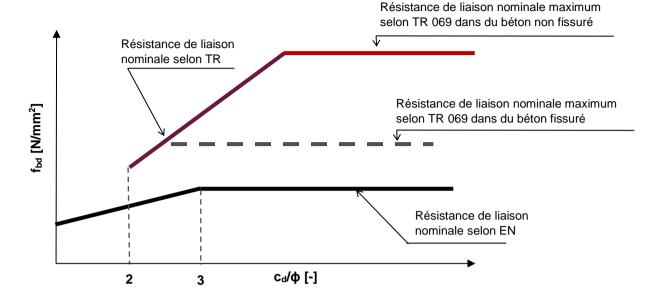
Plage de températures I : (temp. min. du matériau de support -40 °C, température max. du matériau de support à long terme/court terme : +24 °C/40 °C).

³⁾ Mèche creuse Hilti disponible pour tailles d'éléments φ10-φ28.

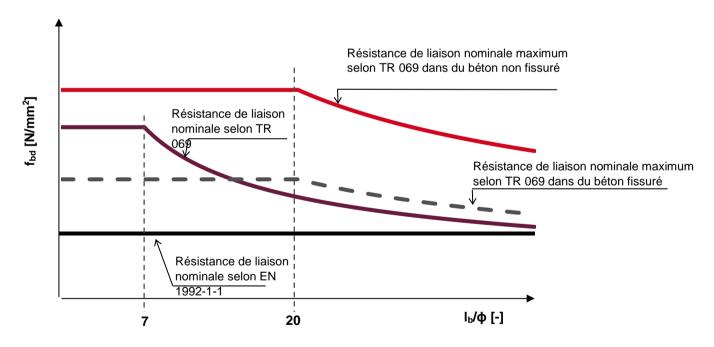
Les outils de bouchardage sont disponibles pour les tailles d'éléments φ14- φ28.

Plage de températures I : (temp. min. du matériau de support -40 °C, température max. du matériau de support à long terme/court terme : +24 °C/40 °C).

Plage de températures I : (temp. min. du matériau de support -40 °C, température max. du matériau de support à long terme/court terme : +24 °C/40 °C).


³⁾ Mèche creuse Hilti disponible pour tailles d'éléments \(\phi 10 - \phi 28. \)

Les outils de bouchardage sont disponibles pour les tailles d'éléments φ14- φ28.


Plage de températures I : (temp. min. du matériau de support -40 °C, température max. du matériau de support à long terme/court terme : +24 °C/40 °C).

Calcul statique selon EOTA TR 069

Influence de la couverture de béton/ diamètre de fer d'armature sur les valeurs nominales de résistance de liaison pour des fers d'armature installés a posteriori selon TR 069 et EN 1992-1-1.

Influence de la longueur d'ancrage/ diamètre de fer d'armature sur les valeurs nominales de résistance de liaison pour des fers d'armature installés a posteriori selon TR 069 et EN 1992-1-1.

Résistance de liaison caractéristique selon EOTA TR 069 (pour $7\phi \le I_b \le 20\phi$) pendant une durée de vie de 50 et 100 ans :

$$\tau_{Rk,sp} = A_k \cdot \left(\frac{f_{ck}}{25}\right)^{sp1} \cdot \left(\frac{25}{\phi}\right)^{sp2} \cdot \left[\left(\frac{c_d}{\phi}\right)^{sp3} \cdot \left(\frac{c_{max}}{c_d}\right)^{sp4} + k_m \cdot K_{tr}\right] \cdot \left(\frac{7\phi}{l_b}\right)^{lb1} \cdot \Omega_{p,tr} \leq \tau_{Rk,ucr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} \cdot \Omega_{cr} |\Omega_{p,tr} \cdot \psi_{sus}|^{2} + k_m \cdot K_{tr} \cdot \Omega_{cr} \cdot \Omega_{cr}$$

 $\tau_{Rk,sp}$ = résistance de liaison caractéristique en [N/mm²] (durée de vie 50 ou 100 ans).

 f_{ck} = résistance caractéristique à la compression du béton cylindrique en [N/mm²].

 ϕ = diamètre de fer d'armature en [mm]. c_d = couverture de béton min. en [mm].

 c_{max} = couverture de béton max. en [mm].

 k_m = facteur d'efficacité des armatures transversales. K_{tr} = ratio normalisé des armatures transversales.

 l_{h} = longueur d'implantation effective des fers d'armature [mm].

 $\Omega_{p,tr}$ = facteur pour tenir compte de la pression transversale dans le béton.

 ψ_{sus} = facteur pour tenir compte de l'effet des charges soutenues sur la résistance de liaison selon

EN 1992-4.

Trous percés par percussion, trous percés par percussion avec une mèche creuse Hilti et trous carottés au diamant avec outil de bouchardage Hilti : $\psi^0_{sus} = 0.88$ (recommandation : $\psi^0_{sus,100} = 0.88$)

 $\tau_{Rk,ucr}$ or $\tau_{Rk,100,ucr}$, A_k , sp1, sp2, sp3, sp4, lb1 et Ω_{cr} sont repris dans le tableau ci-dessous.

Données d'entrée pour temps de travail de 50 et 100 ans¹⁾

Taille de fer d'armature	Tame de lei d'armatare		φ10	φ12	ф13	φ14	φ16	φ18	φ20	ф22	ф24	φ25	ф28	ф30	ф32
Arrachement + rupture par cône d	Arrachement + rupture par cône de béton dans du béton non fissuré C20/25														
Résistance caractéristique τ _{Rk,ucr}	[N/mm ²]	10	15	15	15	15	15	14	14	14	14	14	14	13	13
Résistance caractéristique TRK,100,ucr	[N/mm ²]	10	15	15	15	15	15	14	14	14	14	14	14	13	13
Résistance de liaison															
Facteur de base du produit A _k	[-]							4	,2						
Exposant pour l'influence de la résistance à la compression du béton sp1	[-]	0,35													
Exposant pour l'influence du diamètre des fers d'armature φ sp2	[-]	0,19													
Exposant pour l'influence de la couverture de béton sp3	[-]							0,	67						
Exposant pour l'influence de la couverture latérale de béton sp4	[-]	0,33													
Exposant pour l'influence de la longueur d'ancrage lb1	[-]	0,60													
Influence du béton fissuré sur l'a	Influence du béton fissuré sur l'arrachement combiné à la rupture par cône de béton														
Facteur pour l'influence du béton															

Facteur pour l'influence du béton fissuré Ω_{cr}	[-]	1,00	0,94	0,90	0,89	0,87	0,85	0,82	0,80	0,79	0,77	0,76	0,74	0,73	0,72
Plage de températures I : (temp. min. du matériau de support -40 °C, température max. du matériau de support à long terme/court terme :															

²⁾ Mèche creuse Hilti disponible pour tailles d'éléments \(\phi 10-\phi 28. \)

+24 °C/40 °C).

³⁾ Les outils de bouchardage Hilti sont disponibles pour les tailles d'éléments φ14-φ28.

Longueur d'ancrage pour résistance caractéristique de l'acier f_{yk}= 500 N/mm² dans de bonnes conditions

Pour des trous percés par percussion et des trous percés par percussion avec une mèche creuse¹⁾:

Taille		f _{bd}	f _{bd,po}	I _{0,min} ²⁾	I _{b,min} 3)	I _{bd,α2=1} 4)	I _{bd,α2=0,7} 5)	I _{bd,HRM, α2<0,7} 6)	I _{max} ⁷⁾
de fer d'arm ature	Classe de béton	[N/mm²]	[N/mm²]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
10	C20/25	2,3	6,7	200	113	378	265	130	1000
ф8	C50/60	4,3	7,3	200	100	202	142	119	1000
140	C20/25	2,3	10,0	213	142	473	331	109	1000
φ10	C50/60	4,3	10,9	200	100	253	177	100	1000
140	C20/25	2,3	10,0	255	170	567	397	131	1200
φ12	C50/60	4,3	10,9	200	120	303	212	120	1200
144	C20/25	2,3	10,0	298	198	662	463	152	1400
φ14	C50/60	4,3	10,9	210	140	354	248	140	1400
146	C20/25	2,3	10,0	340	227	756	529	174	1600
ф16	C50/60	4,3	10,9	240	160	404	283	160	1600
ф20	C20/25	2,3	9,3	435	284	945	662	234	2000
φ20	C50/60	4,3	10,1	300	200	506	354	215	2000
φ25	C20/25	2,3	9,3	532	354	1181	827	292	2500
ΨΖΟ	C50/60	4,3	10,1	375	250	632	442	268	2500
ф28	C20/25	2,3	9,3	595	397	1323	926	327	2800
ΨΖΟ	C50/60	4,3	10,1	420	280	708	495	300	2800
ф30	C20/25	2,3	8,7	638	425	1418	992	375	3000
ψ30	C50/60	4,3	9,5	450	300	758	531	344	3000
ф32	C20/25	2,3	8,7	681	454	1512	1059	400	3200
ψ32	C50/60	4,3	9,5	480	320	809	566	367	3200
ф36	C20/25	2,2	6,1	534	540	1779	1245	642	3200
Ψου	C50/60	3,2	6,6	367	540	1223	856	589	3200
φ40	C20/25	2,1	5,6	621	621	2070	1449	777	3200
Ψτυ	C50/60	2,8	6,1	466	600	1553	1087	713	3200

¹⁾ Mèche creuse Hilti disponible pour tailles d'éléments φ10-φ28.

²⁾ Longueur d'ancrage minimum pour joint de chevauchement.

³⁾ Longueur d'ancrage minimum pour liaisons à appui simple

Longueur d'ancrage pour liaisons à appui simple si : $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = 1$ - (calcul pour élasticité).

⁵⁾ Longueur d'ancrage pour liaisons à appui simple si : $\alpha_1 = \alpha_3 = \alpha_4 = \alpha_5 = 1$; $\alpha_2 = 0.7$ - (calcul pour élasticité).

⁶⁾ Longueur d'ancrage avec méthode de calcul HIT Rebar (HRM) pour des liaisons à appui simple si : α₁= α₃=α₄= α₅= 1; α₂< 0,7. Uniquement si une couverture de béton adéquate est appliquée.

Profondeur d'implantation maximum possible en raison de restrictions de pose de la résine.

Charge sismique

Résistance de liaison nominale en N/mm² dans de bonnes conditions de liaison pour une durée de vie de 50 et 100 ans¹)

Pour des trous percés par percussion, des trous percés par percussion avec une mèche creuse Hilti²⁾ et des trous carottés au diamant avec outil de bouchardage Hilti TE-YRT³⁾:

Tallla da fan	ETE-20/0540, publiée le 09-07-2021 Classe de béton										
Taille de fer d'armature											
a armature	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60			
ф8 - ф32	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3			
ф34	2,0	2,3	2,6	2,9	3,3	3,6	3,9	4,2			
ф36	1,9	2,2	2,6	2,9	3,2	3,5	3,8	4,1			
φ40	1,8	2,1	2,5	2,8	3,1	3,4	3,7	3,9			

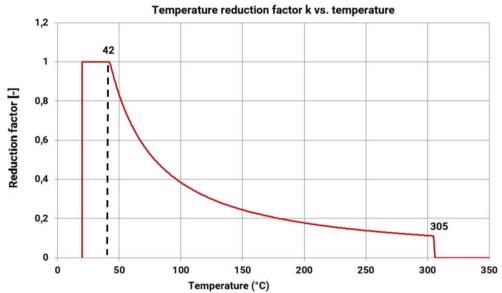
Pour de mauvaises conditions de liaison, multipliez les valeurs par 0,7.

Pour des trous carottés au diamant :

Taille de fee	ETE-20/0540, publiée le 09-07-2021										
Taille de fer d'armature	Classe de béton										
a armature	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60			
φ12	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,0			
φ13 - φ32	2,0	2,3	2,7	3,0	3,3	3,4	3,4	3,4			
ф34	1,9	2,3	2,3	2,3	2,3	2,3	2,3	2,3			
ф36	1,9	2,2	2,2	2,2	2,2	2,2	2,2	2,2			
φ40	1,8	2,1	2,1	2,1	2,1	2,1	2,1	2,1			

Pour de mauvaises conditions de liaison, multipliez les valeurs par 0,7.

²⁾ Mèche creuse Hilti disponible pour tailles d'éléments φ10-φ28.


³⁾ Les outils de bouchardage Hilti sont disponibles pour les tailles d'éléments φ14-φ28.

Résistance au feu

Facteur de réduction de température $k_{\text{fi}}(\theta)$ pour classe de béton C20/25 dans de bonnes conditions de liaison

selon ETA-20/0540 pour une durée de vie de 50 et 100 ans¹⁾

La valeur de la résistance de liaison f_{bd,fi} en cas d'exposition au feu a été calculée au moyen de l'équation suivante :

$$f_{bd,fi} = k_{b,fi}(\theta) \cdot f_{bd,PIR} \cdot \frac{\gamma_c}{\gamma_{M,fi}}$$

pour une durée de vie de 50 ans

$$f_{bd,fi,100y} = k_{b,fi,100y}(\theta) \cdot f_{bd,PIR,100y} \cdot \frac{\gamma_c}{\gamma_{Mfi}}$$

pour une durée de vie de 100 ans

avec $\theta \le 305 \,^{\circ}\text{C}$:

$$k_{b,fi}(\theta) = \frac{651,24 \cdot \theta^{-1,115}}{f_{bd,PIR} \cdot 4,3} \le 1,0$$

pour une durée de vie de 50 ans

$$k_{b,fi,100y}(\theta) = \frac{651,24 \cdot \theta^{-1,115}}{f_{bd,PIR,100y} \cdot 4,3} \le 1,0$$

pour une durée de vie de 100 ans

$$\theta > 305$$
°C:

$$k_{b.fi}(\theta) = k_{b.fi.100\nu}(\theta) = 0.0$$

 $f_{bd,fi,50y}$ = Valeur nominale de la résistance de liaison en cas d'incendie en N/mm² (durée de vie 50 ans).

 $f_{bd,fi,100y}$ = Valeur nominale de la résistance de liaison en cas d'incendie en N/mm² (durée de vie 100 ans).

 (θ) = température en °C dans la couche de résine.

 $k_{b,fi}(\theta)$ = Facteur de réduction en cas d'exposition au feu.

 $k_{b,fi,100y}(\theta)$ = Facteur de réduction en cas d'exposition au feu pour une durée de vie de 100 ans.

 $f_{bd,PIR}$ = valeur nominale de la résistance de liaison en N/mm2 dans des conditions froides conformément au tableau C3 ou C6 de l'ETE 20/0540 en tenant compte des classes de béton, du diamètre des fers d'armature, de la méthode de perçage et des conditions de liaison selon la norme EN 1992-1-1.

 $f_{bd,PIR,100y}$ = valeur nominale de la résistance de liaison en N/mm2 dans des conditions froides conformément au tableau C3 ou C6

en tenant compte des classes de béton, du diamètre des fers d'armature, de la méthode de perçage et des conditions de liaison

selon la norme EN 1992-1-1 pour une durée de vie de 100 ans.

 γ_c = Coefficient partiel de sécurité selon la norme EN 1992-1-1

 $\gamma_{M,fi}$ = Coefficient partiel de sécurité selon la norme EN 1992-1-2

Pour les preuves d'exposition au feu, la longueur d'ancrage doit être calculée selon la norme EN 1992-1- 1:2004+AC:2010 Équation 8.3 en utilisant la résistance de liaison dépendante de la température f_{bd,fi.}

Matériaux

Propriétés mécaniques

Taille de fer	ф8	φ10	φ12	ф13	φ14	φ16	φ18	ф20	φ24	φ25	φ28	ф30	ф32	ф36	φ40
Résistance à la traction nominale \(\frac{1}{2}\)/mm²] f _{uk}	550	550	550	550	550	550	550	550	550	550	550	550	550	550	550
Limite d'élasticité f _{yk} V/mm²]	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500
Section transversale sous [mm²] contrainte As	50,3	78,5	113	133	154	201	254	314	452	491	616	707	804	1018	1257
Moment de résistance W [mm³]	50,3	98,2	170	216	269	402	573	785	1357	1534	2155	2650	3217	4580	6283

Qualité du matériau

Pièce	Matériau
Fer d'armature EN 1992-1-1:2004 et AC :2010	Barres et tiges redressées de classe B ou C avec f_{yk} et k selon les NDP ou NCL de la norme EN 1992-1-1/ NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$

Aptitude à l'emploi

Certains essais de fluage ont été réalisés conformément à EAD 330087 dans les conditions suivantes : dans un environnement sec à 50 °C pendant 90 jours.

Ces essais montrent un excellent comportement de la connexion installée à posteriori, réalisée avec HIT-RE 500 V4 : faibles déplacements avec stabilité à long terme, charge de rupture après exposition supérieure à la charge de référence.

Résistance aux substances chimiques

Substances chimiques testées	Teneur	Résistance
•	(%)	
Toluène	47,5	+
Iso-octane	30,4	+
Heptane	17,1	+
Méthanol	3	+
Butanol	2	+
Toluène	60	+
Xylène	30	+
Méthylnaphthalène	10	+
Diesel	100	+
Essence	100	+
Méthanol	100	-
Dichlorométhane	100	-
Monochlorobenzène	100	0
Acétate d'éthyle	50	+
Méthylisobutylcétone	50	+
Acide salicylique-	50	+
Acétophénone	50	+
Acide acétique	50	-
Acide propionique	50	-
Acide sulfurique	100	-
Acide nitrique	100	-
Acide chlorhydrique	36	-
Hydroxyde de	100	-
⊥ Pácistant		

Substances chimiques testées	Teneur (%)	Résistance
Hydroxyde de sodium 20 %	100	-
Triéthanolamine	50	-
Butylamine	50	-
Alcool benzylique	100	-
Éthanol	100	-
Acétate d'éthyle	100	-
Méthyléthylcétone (MEK)	100	-
Trichloréthylène	100	-
Lutensit TC KLC 50	3	+
Marlophen NP 9,5	2	+
Eau	95	+
Tétrahydrofurane	100	-
Eau déminéralisée	100	+
Eau salée	saturée	+
Test au brouillard salin	-	+
SO ₂	-	+
Environnement/météo	-	+
Huile pour coffrage (huile de	100	+
Plastifiant concentré	-	+
Solution de potasse pour béton	-	+
Solution de potasse pour béton	-	+
Suspension saturée de débris de forage	-	+

- + Résistant
- Non résistant
- o Partiellement résistant

Plage de températures de pose

-5 °C à +40 °C

Plage de températures d'utilisation

La résine d'injection Hilti HIT-RE 500 V4 peut être appliquée aux températures indiquées ci-dessous. Une température trop élevée du matériau de support peut affaiblir la résistance à la rupture du produit.

ETE-20/0540

Plage de températures	Température du matériau de support	Température maximum à long terme du matériau de support	Température maximum à court terme du matériau de support
Plage de températures I	-40 °C à +80 °C	+50 °C	+80 °C

ETE-20/0539

Plage de températures	Température du matériau de support	Température max. à long terme du matériau de support	Température max. à court terme du matériau de support
Plage de températures I	-40 °C à +40 °C	+24 °C	+40 °C
Plage de températures II	-40 °C à +55 °C	+43 °C	+55 °C
Plage de températures III	-40 °C à +75 °C	+55 °C	+75 °C

Température max. à court terme du matériau de support

Les températures élevées court terme du matériau de support sont celles observées sur de brèves périodes de temps, par exemple au cours du cycle diurne.

Température max. à long terme du matériau de support

Les températures élevées à long terme du matériau de support sont à peu près constantes sur des périodes de temps assez longues.

Temps de travail et temps de durcissement¹⁾

Température du matériau de support T ²⁾	Temps de travail pendant lequel les fers d'armature peuvent être insérés et ajustés t _{gel}	Temps de durcissement initial t _{cure,ini}	Temps de durcissement avant de pouvoir charger complètement les fers d'armature t _{cure}
$5~^{\circ}C \leq T_{BM} < -1~^{\circ}C$	2 h	48 h	168 h
$0~^{\circ}C \leq T_{BM} < 4~^{\circ}C$	2 h	24 h	48 h
$5~^{\circ}C \leq T_{BM} < 9~^{\circ}C$	2 h	16 h	24 h
$10~^{\circ}C \leq T_{BM} < 14~^{\circ}C$	1,5 h	12 h	16 h
$15 \text{ °C} \leq T_{BM} < 19 \text{ °C}$	1 h	8 h	16 h
$20~^{\circ}C \leq T_{BM}~< 24~^{\circ}C$	30 min	4 h	7 h
$25~^{\circ}C \leq T_{BM}~< 29~^{\circ}C$	20 min	3,5 h	6 h
$30~^{\circ}C \leq T_{BM}~< 34~^{\circ}C$	15 min	3 h	5 h
$35~^{\circ}C \leq T_{BM}~< 39~^{\circ}C$	12 min	2 h	4,5 h
T _{BM} = 40 °C	10 min	2 h	4 h

Les données concernant le temps de durcissement s'appliquent uniquement si le matériau de support est sec. S'il est humide, les temps de durcissement doivent être multipliés par deux.

²⁾ La température minimale de la cartouche est de +5 °C.

Informations de pose

Équipement de pose															
Taille de fer d'armature	ф8	φ10	φ12	φ13	φ14	ф16	ф18	ф20	ф24	ф25	ф28	ф32	ф34	ф36	φ40
Perforateur	TE 2 (-A)- TE 40(-A)				TE40 – TE80										
	Po	ompe à	dépou	ssiérer	(h _{ef} ≤ 1	0·d)	-								
Autres outils	Jeu (Pistolet à air comprimé ^{a)} Jeu de brosses de nettoyage ^{b)} , pince d'injection, piston Outils de bouchardage													

Pistolet à air comprimé avec tuyau de rallonge pour tous les trous d'une profondeur de plus de 250 mm (pour φ 8 à φ 12) ou de plus de 20 φ (pour φ > 12 mm).

Couverture de béton minimum c_{min} des fers d'armature installés a posteriori

	Taille de fee	Couverture de béton minimum c _{min} [mm]				
Méthode de perçage	Taille de fer d'armature	Sans aide au perçage	Avec aide au perçage			
Perçage à percussion (HD) et	φ < 25	30 + 0,06 · I _V ≥ 2 · φ	30 + 0,02 · I _v ≥ 2 · φ			
(HDB)	φ ≥ 25	40 + 0,06 · I _V ≥ 2 · φ	40 + 0,02 · I _V ≥ 2 · φ			
Poroago à air comprimé (CA)	φ < 25	50 + 0,08 ⋅ I _v	50 + 0,02 ⋅ I _v	ริกศิลสิกศิลสิกศิล		
Perçage à air comprimé (CA)	φ ≥ 25	60 + 0,08 · I _v ≥ 2 · φ	60 + 0,02 · l _v ≥ 2 · φ			
Carottage au diamant en milieu	φ < 25	La colonne fonctionne	30 + 0,02 · I _V ≥ 2 · φ			
humide (PCC) ou sec (DD)	φ ≥ 25	comme une aide au	40 + 0,02 · I _v ≥ 2 · φ			
Carottage au diamant avec outil	φ < 25	30 + 0,06 · l _v ≥ 2 · φ	$30 + 0.02 \cdot I_{v} \ge 2 \cdot \phi$			
de bouchardage TE-YRT (RT)	φ ≥ 25	40 + 0,06 · l _v ≥ 2 · φ	40 + 0,02 · I _V ≥ 2 · φ			

Pince d'injection et profondeur d'implantation maximum correspondante

 $\ell_{
m v.max}$

Taille de fer	HDM 330, HDM 500	HDE 500	HIT-P8000D				
d'armature	$\ell_{ m v,max}$ [mm]						
ф8		1000	-				
ф10		1000	-				
φ12	1000	1200	1200				
φ13	1000	1300	1300				
φ14		1400	1400				
φ16		1600	1600				
φ18	700	1800	1800				
φ20	600	2000	2000				
ф22	500	1800	2200				
φ24	300	1300	2400				
φ25	300	1500	2500				
ф26	300	1000	2600				
ф28	300	1000	2800				
φ30		1000	3000				
ф32		700					
φ34	-	600	2000				
φ36		600	3200				
φ40		400					

Brossage automatique avec brosse ronde pour tous les trous d'une profondeur de plus de 250 mm (pour φ 8 à φ 12) ou de plus de 20 φ (pour φ > 12 mm)

Diamètres de perçage

Diametres de				Carottage au diamant				
Taille de fer d'armature	Perceuse à percussion (HD)	Mèche creuse (HDB) ^{b)}	Perceuse à air comprimé (CA) ^{c)}	Sec (PCC)b)c)	Humide (DD) ^{c)}	Avec outil de bouchardage (RT) ^{b)}		
	d₀ [mm]							
12/2/1/2/2// (2))))))))								
ф8	12 (10 a))	-	-	-	12 (10 ^{a)})	-		
φ10	14 (12 ^{a)})	14 (12 ^{a)})	-	-	14 (12 ^{a)})	-		
φ12	16 (14 ^{a)})	16 (14 ^{a)})	17	-	16 (14 ^{a)})	-		
φ12/ HZA(-R) M12	16	16	-	-	16	-		
φ13	16	16	17	-	16	-		
φ14	18	18	17	-	18	18		
ф16	20	20	20	-	20	20		
ф18	22	22	22	-	22	22		
ф20	25	25	26	-	25	25		
ф22	28	28	28	-	28	28		
ф24	32 (30 a))	32 (30 a))	32	35	32	32		
ф25	32 (30 a))	32 (30 a))	32	35	32	32		
ф26	35	35	35	35	35	35		
ф28	35	35	35	35	35	35		
ф30	37	-	37	35	37	-		
ф32	40	ı	40	47	40	-		
ф34 ^{с)}	45	1	42	47	45	-		
ф36 ^{с)}	45	-	45	47	47	-		
ф40 ^{с)}	55	-	57	52	52	-		

a) Il est possible d'utiliser les deux valeurs.

Composants associés pour l'utilisation de l'outil de bouchardage Hilti TE-YRT

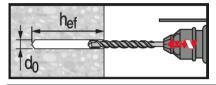
	au diamant	Outil de bouchardage TE-YRT	Jauge d'usure RTG		
\$	>				
d ₀	[mm]	d₀ [mm]	taille		
nominal	mesuré	d ₀ [mm]	talle		
18	17,9 à 18,2	18	18		
20	19,9 à 20,2	20	20		
22	21,9 à 22,2	22	22		
25	24,9 à 25,2	25	25		
28	27,9 à 28,2	28	28		
30	29,9 à 30,2	30	30		
32	31,9 à 32,2	32	32		
35	34,9 à 35,2	35	35		

Temps de bouchardage minimum $t_{roughen} (t_{roughen} [sec] = h_{ef} [mm] /10)$

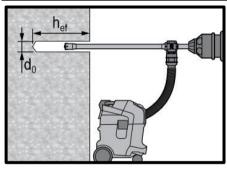
h _{ef} [mm]	t _{roughen} [sec]
0 à 100	10
101 à 200	20
201 à 300	30
301 à 400	40
401 à 500	50
501 à 600	60

b) Aucun nettoyage requis.

Uniquement pour le calcul EN 1992-1-1, pas disponible pour le calcul TR 069.

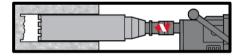

Instructions de pose

*Voir les instructions d'utilisation fournies avec l'emballage du produit pour des informations détaillées sur la pose.

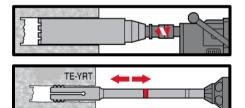

Règles de sécurité.

Consultez la fiche de données de sécurité (FDS) avant utilisation pour une manipulation correcte et sans danger ! Lorsque vous utilisez le Hilti HIT-RE 500 V4, portez des lunettes de protection parfaitement ajustées et des gants de protection.

Forage

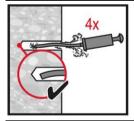


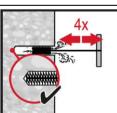
Trou percé par percussion (HD)

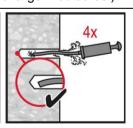


Trou percé par percussion avec mèche creuse Hilti (HDB)

Aucun nettoyage requis.




Forage au diamant (DD)

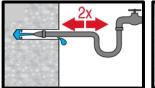


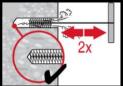
Forage au diamant avec outil de bouchardage (DD+ RT)

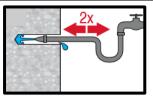
Nettoyage (trou mal nettoyé = valeurs de charge médiocres.)

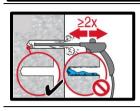
Perçage à percussion :

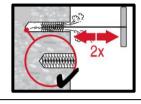
Pour des trous d'un diamètre $d_0 \le 20$ mm et d'une profondeur de perçage $h_0 \le 10d$.



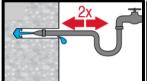

Perçage à percussion :


Nettoyage à air comprimé (CAC)


pour des trous d'un diamètre d_0 et d'une profondeur de perçage h_0



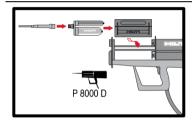


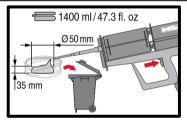




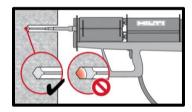
Trous carottés au diamant :

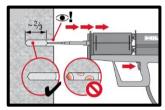
Pour tous les trous d'un diamètre d_0 et d'une profondeur de perçage h_0 ..

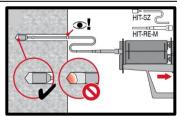


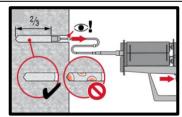


Trous carottés au diamant avec outil de bouchardage Hilti :

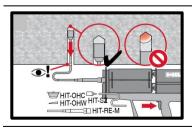

Pour tous les trous d'un diamètre d_0 et d'une profondeur de perçage h_0 ..

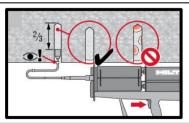

Préparation de l'injection


Préparation du système d'injection.



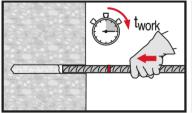
Méthode d'**injection** pour profondeur de perçage

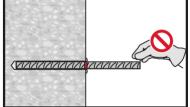

 $h_{ef} \le 250 \text{ mm}.$



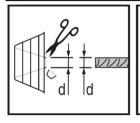
Méthode d'**injection** pour profondeur de perçage

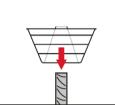
 $h_{ef} > 250$ mm.

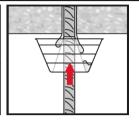


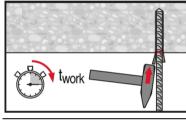


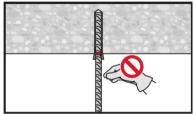
Méthode d'**injection** pour application au plafond.

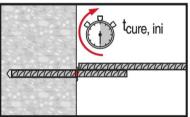


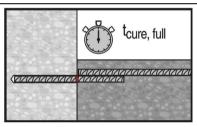

Pose de l'élément






Pose de l'élément, respecter le temps de travail « t_{work} ».





Pose de l'élément pour applications au plafond, respecter le temps de travail « t_{work} ».

N'appliquer la pleine charge qu'après le temps de durcissement « t_{cure} ».