

CONNECTEUR BOIS HCW

Fiche technique:

MAJ: Janvier 2024

Hilti Connecteur Bois HCW

Système de fixation du bois plus rapide et plus efficace pour l'assemblage d'éléments préfabriqués en bois

Table des matières

Pièces du système	3
Taille du produit	4
Informations sur les dessins et modèles - vue d'ensemble	6
Les bases du design	9
Information Hilti Wood Connector HCW et HCW-L	11
Résistance à la charge	11
Liste des abréviations (Symboles utilisés)	20
Instructions d'installation Hilti HCW et HCW-L	22
Références	23

Pièces du système

Hilti Connecteur Bois HCW

Hilti Connecteur Bois HCW 37x45 M12 et outil de réglage SW HCW

Hilti Connecteur Bois HCW L 40x295 M12

Vis bois (pour la fixation dans le bois)

Vis bois HSW M12x220/60 8,8

Fixation pour béton

Ancrage à expansion HST3 M12x ... (ETA-98/0001)

Tige d'ancrage HAS-U M12x ... en combinaison avec le mortier injectable HIT HY200

Conditions de charge

Matériau de base

Béton (non fissuré)

Béton (fissuré)

Bois massif

Bois lamellécroisé

Bois lamellécollé

Statique / quasistatique

Autres informations

Évaluation technique européenne

Conformité CE

Agréments / certificats

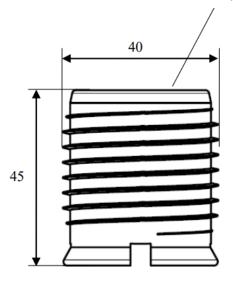
Description	Autorité / Laboratoire	N° / date de délivrance
Évaluation technique européenne a)	ETA-Danmark A/S	ETA-21/0357 / 2022-04-25

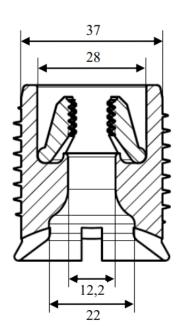
a) Toutes les données fournies dans cette section sont conformes à l'ETA-21/0357 du 2022-04-25.

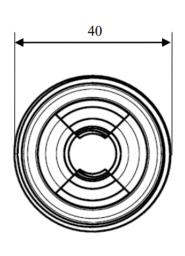
Taille du produit

Hilti Connecteur Bois HCW

Diamètre extérieur : 40 mm
Diamètre du corps : 37 mm
Longueur : 45 mm


Matériau:


- Manche: 11SMNPB30+C selon EN10277


- Dispositif de serrage : 11SMNPB30, 16MnCrS5+C selon EN10277 ;

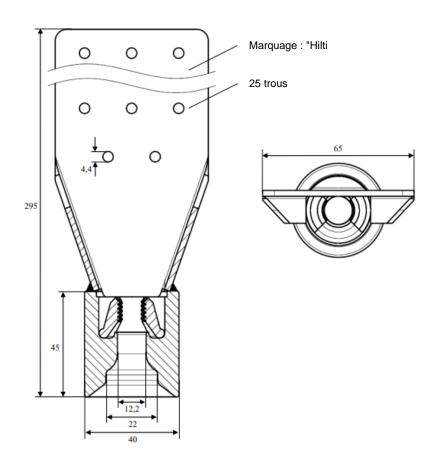
Zingage électrolytique ≥ 5 µm

Marquage: "Hilti HCW

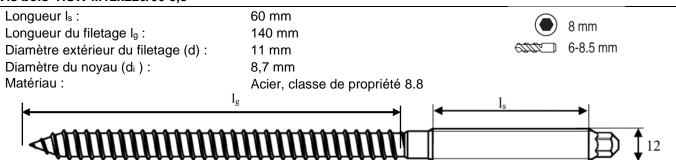
Hilti Connecteur Bois HCW L

40 mm Diamètre extérieur, manchon : 45 mm Longueur, manche: 295 mm Longueur: 65 mm Largeur, plaque: 2,5 mm Épaisseur de la plaque : Diamètre du trou, plaque : 4.4 mm Longueur recommandée, clou: 60 mm Diamètre, clou: 4 mm

Matériau:


- Manchon et plaque de

clouage:


- Dispositif de serrage : 16MnCrS5+C selon EN10277 ;

Zingage électrolytique ≥ 5 µm

S335J2 selon EN10277

Vis bois HSW M12x220/60 8,8

Informations sur les dessins et modèles - vue d'ensemble

Calcul des capacités de charge dans les assemblages bois-bois

Forces de traction :

La valeur de conception de la capacité de charge pour les forces de traction est la plus petite valeur des capacités de charge suivantes.

Preuve de la capacité de résistance à la traction du Hilti Wood Connector HCW et de la vis bois HSW:

$$F_{ax.\alpha.Ed} \leq F_{ax.\alpha.Rd}$$

$$F_{ax,\alpha,Rd} = min \begin{cases} \frac{k_{mod} F_{ax,Rk; HCW}}{\gamma_{M}} \\ \frac{F_{t,Rk; HCW}}{\gamma_{M,2}} \\ \frac{k_{mod} F_{ax,Rk; HSW}}{\gamma_{M}} \\ \frac{F_{t,Rk; HSW}}{\gamma_{M,2}} \end{cases}$$

avec

Capacité de retrait caractéristique, HCW ... voir Tableau 6 et Tableau 7 Fax,Rk; HCW:

Capacité de charge caractéristique sous une force de traction, HCW: Ft,Rk, HCW = 37,5 kN (voir ETA $F_{t,Rk;HCW}$:

21/0357)

Fax,Rk; HSW: Capacité caractéristique de retrait axial, boulon de suspension ... voir Tableau 8 et Tableau 9

 $F_{t,Rk; HSW}$: Résistance caractéristique à la traction, boulon de suspension ... voir page 13

voir Tableau 1, Tableau 2 et Tableau 3 **k**_{mod}

У м voir Tableau 4

voir EN 1993-1-1 chapitre 6.1 Vм.2

Forces latérales (forces de cisaillement) :

La connexion est conçue conformément à la norme EN 1995-1-1 en utilisant la théorie de la limite d'élasticité de Johansen pour les connexions bois-bois et les fixations en cisaillement simple.

HCW à l'épreuve du cisaillement :

 $F_{v,Ed} \le \frac{k_{mod} F_{v,Rk; HCW}}{\gamma_M}$ $F_{v,Ed} \le \frac{k_{mod} F_{v,Rk; HSW}}{\gamma_M}$

Vis bois résistant au cisaillement :

avec

F_{v,Rk; HCW}: Capacité caractéristique de charge en cisaillement, HCW ... voir Tableau 10

F_{v.Rk: HSW}: Capacité de charge caractéristique en cisaillement, vis bois ... voir Tableau 11, Tableau 12,

Tableau 13 et Tableau 14

voir Tableau 1, Tableau 2 et Tableau 3 k_{mod}

voir Tableau 4 Vм

Capacité de charge des assemblages bois-béton

Deux cas d'application (HST3 et HIT HY200 + tige d'ancrage HAS-U 8.8) ont été pris en compte dans les tableaux de conception suivants. Pour d'autres applications, veuillez utiliser notre logiciel de conception PROFIS Engineering.

Forces de traction :

Preuve de la capacité de charge en traction du Hilti Wood Connector HCW:

$$F_{ax,\alpha,Ed} \leq F_{ax,\alpha,Rd}$$

$$F_{ax,\alpha,Rd} = min \begin{cases} \frac{k_{mod} F_{ax,Rk; HCW}}{\gamma_M} \\ \frac{F_{t,Rk; HCW}}{\gamma_{M,2}} \end{cases}$$

Preuve de la capacité de charge en traction de l'ancrage en béton :

$$N_{Ed} \leq min \begin{cases} \frac{N_{Rk,s}}{\gamma_{Ms}} \\ \frac{N_{Rk,c}}{\gamma_{Mc}} \\ \frac{N_{Rk,p}}{\gamma_{Mp}} \\ \frac{N_{Rk,sp}}{\gamma_{Msp}} \end{cases}$$

avec

Fax,Rk; HCW: Capacité de retrait caractéristique HCW ... voir Tableau 6 et Tableau 7

F_{t,Rk; HCW}: Capacité de charge caractéristique sous une force de traction HCW: F_{t,Rk, HCW} = 37,5 kN (voir ETA

21/0357)

Capacité de charge caractéristique sous la force de traction d'un ancrage en béton :

N_{Rk,s} Valeur caractéristique de la résistance de l'acier sous charge de traction ... voir Tableau 15

N Rk,c Résistance caractéristique en cas de rupture du cône de béton sous charge de traction ... voir

Tableau 16

N Rk,p Résistance caractéristique en cas de rupture par arrachement sous charge de traction ... voir

Tableau 17

N Rk,sp Rupture combinée de l'arrachement et du béton (pour les fixations collées) ... voir Tableau 18

k_{mod} voir Tableau 1, Tableau 2 et Tableau 3

v_M voir Tableau 4

 $\gamma_{M,2}$ voir EN 1993-1-1 chapitre 6.1 γ_{Ms} , γ_{Mc} , γ_{Mp} et γ_{Msp} voir Tableau 5

Forces latérales (forces de cisaillement) :

HCW à l'épreuve du cisaillement :

$$F_{v,Ed} \leq F_{v,Rd}$$

$$F_{v,Rd} = \frac{k_{mod} F_{v,Rk;HCW}}{v_{M}}$$

Ancrage de béton résistant à l'effort de cisaillement :

$$V_{Ed} \leq min \begin{cases} \frac{V_{Rk,s}}{\gamma_{Ms}} \\ \frac{V_{Rk,s,M}}{\gamma_{Ms}} \\ \frac{V_{Rk,c,M}}{\gamma_{Ms}} \\ \frac{V_{Rk,cp}}{\gamma_{Mc}} \\ \frac{V_{Rk,c}}{\gamma_{Mc}} \end{cases}$$

F_{v,Rk; HCW}: Capacité caractéristique de charge en cisaillement, HCW ... voir Tableau 10

Capacité de charge de cisaillement caractéristique, ancrage en béton :

V Rk,s Rupture de l'acier sous une charge de cisaillement sans bras de levier ... voir Tableau 19 V Rk,s,M Rupture de l'acier sous une charge de cisaillement avec bras de levier ... voir Tableau 20

V Rk,cp Rupture par arrachement du béton sous charge de cisaillement ... voir Tableau 21

V_{Rk,c} Rupture de l'arête en béton sous charge de cisaillement ... voir Tableau 22

k mod voir Tableau 1, Tableau 2 et Tableau 3

γ_M voir Tableau 4

 γ_{Ms} et γ_{Mc} voir Tableau 5

Les bases de la conception

Les bases de la conception selon l'EN 1995-1-1

Des informations sur les exigences nationales peuvent être incluses dans l'annexe nationale.

Classes de durée de charge								
Classe de durée de charge	Exemples de chargement							
Permanent	plus de 10 ans	poids propre						
Long terme	6 mois - 10 ans	stockage						
Moyen terme	1 semaine - 6 mois	charge au sol imposée, neige						
Court terme	moins d'une semaine	neige, vent						
Instantané		vent, charge accidentelle						

Tableau 1: Classes de durée de charge et exemples d'affectation de la durée de charge (EN 1995-1-1 Table 2.1 et 2.2)

Classes de services

La classe de service 1 se caractérise par une teneur en humidité des matériaux correspondant à une température de 20 °C et à une humidité relative de l'air ambiant ne dépassant 65 % que quelques semaines par an.

NOTE : Dans la classe de service 1, le taux d'humidité moyen de la plupart des bois résineux ne dépasse pas 12 %.

La classe de service 2 est caractérisée par une teneur en humidité des matériaux correspondant à une température de 20 °C et à une humidité relative de l'air ambiant ne dépassant 85 % que quelques semaines par an.

NOTE : Dans la classe de service 2, le taux d'humidité moyen de la plupart des bois résineux ne dépasse pas 20 %.

La classe de service 3 est caractérisée par des conditions climatiques entraînant des taux d'humidité plus élevés que dans la classe de service 2.

Tableau 2: Classes de service (EN 1995-1-1 Chapitre 2.3.1.3)

	Les valeurs de k _{mod}									
			Classe de durée de charge							
Matériau	Standard	Service classe	Action permanent	Longues action à	Moyen terme	Court action à	Action instantané			
			е	terme	action	terme	е			
		1	0.60	0.70	0.80	0.90	1.10			
Bois massif	EN 14081-1	2	0.60	0.70	0.80	0.90	1.10			
		3	0.50	0.55	0.65	0.70	0.90			
Collé		1	0.60	0.70	0.80	0.90	1.10			
laminé	EN 14080	2	0.60	0.70	0.80	0.90	1.10			
bois		3	0.50	0.55	0.65	0.70	0.90			
	EN 44074	1	0.60	0.70	0.80	0.90	1.10			
LVL	EN 14374, EN 14279	2	0.60	0.70	0.80	0.90	1.10			
	EN 14279	3	0.50	0.55	0.65	0.70	0.90			
	EN 636									
	Parties 1,	1	0.60	0.70	0.80	0.90	1.10			
Contreplaq	2, 3	2	0.60	0.70	0.80	0.90	1.10			
ué	Partie 2, 3 Troisième partie	3	0.50	0.55	0.65	0.70	0.90			

Tableau 3: Valeurs de k_{mod} (EN 1995-1-1 Tableau 3.1)

Facteurs partiels recommandés γ _M					
Combinaisons fondamentales :					
Bois massif	1.3				
Bois lamellé-collé	1.25				
LVL, contreplaqué, OSB	1.2				
Panneaux de particules	1.3				
Panneaux de fibres, durs	1.3				
Panneaux de fibres, moyen	1.3				
Panneaux de fibres, MDF	1.3				
Panneaux de fibres, souples	1.3				
Connexions	1.3				
Fixations en tôle perforée (Propriétés de l'acier)	1.25				
Combinaisons accidentelles	1.0				

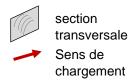
Tableau 4: Facteurs partiels recommandés γ_M pour les propriétés et résistances des matériaux (EN 1995-1-1 Tableau 2.3)

Les bases de la conception selon la norme EN 1993-1-1

Des informations sur les exigences nationales peuvent être incluses dans l'annexe nationale.

 y_{M2} = 1,25 facteur partiel pour la résistance à la rupture des sections transversales en traction selon EN 1993-1-1 Chap. 6.1

Les bases de la conception selon la norme EN 1992-4


Des informations sur les exigences nationales peuvent être incluses dans l'annexe nationale.

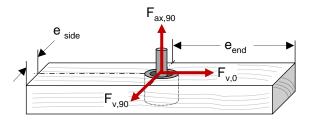
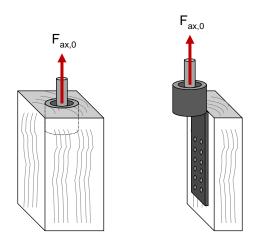
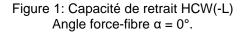

	Facteur partiel								
Modes de défaillance	Situations de conception permanentes et transitoires	Situation de conception accidentelle							
Rupture de l'acier - fixatio	Rupture de l'acier - fixations								
Tension	$\gamma_{Ms} = 1,50^{a}$								
Cisaillement	$\gamma_{Ms} = 1,25^{a}$								
Défaillance liée au béton									
Rupture du cône de	YMc = Yc - Yinst	γ _{Mc} = γ _c - γ _{inst}							
béton, rupture de l'arête	$\gamma_c = 1,5$	γ _c = 1,2							
du béton,	pour la réparation et le renforcement	pour la réparation et le renforcement							
	sismiques des structures existantes, voir	sismiques des structures existantes, voir							
	la série EN 1998	la série EN 1998							
	$\gamma_{inst} = 1,0^{a}$								
éclatement du béton,									
défaillance de									
l'arrachement du béton									
Défaut d'éclatement du	$\gamma_{Msp} = \gamma_{Mc}$								
béton									
Tirette et	$\gamma_{Mp} = \gamma_{Mc}$								
la combinaison de									
l'arrachement et de la									
rupture du béton									
a) voir ETA-98/0001 et ETA-	-11/0493								

Tableau 5: Valeurs recommandées des facteurs partiels (EN 1992-4 Tableau 4.1)

Information Hilti Wood Connector HCW et HCW-L

Les valeurs de la capacité de retrait ou de cisaillement pour le HCW dans les pages suivantes ont été prises en compte pour l'application standard suivante :




Section transversale $\geq 100x45$ mm 2 $e_{end} \geq 200$ mm $e_{side} \geq 40$ mm

Pour les applications non standard, se référer à l'ATE 21/0357 pour les valeurs de capacité de charge.

Résistance à la charge

Capacité de retrait HCW & HCW-L pour le bois massif, le bois lamellé-croisé et le bois lamellé-collé

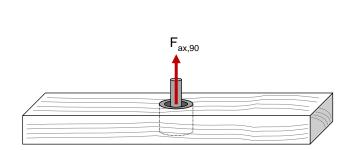


Figure 2: Capacité de retrait du HCW Angle force-fibre $\alpha = 90^{\circ}$.

La capacité de prélèvement en fonction de la densité du bois est déterminée comme suit :

$$F_{ax,\alpha,Rk,\rho_a;HCW} = \left(\frac{\rho_k = 350}{\rho_a}\right)^{0.8} \cdot F_{ax,\alpha,Rk;HCW}$$
 (ETA-21/0357, Annexe C)

avec:

 $F_{ax,0,Rk;\;HCW}=10,4\;kN$ et (ETA-21/0357) $F_{ax,90,Rk;\;HCW}=12,7\;kN$ avec une densité de $\rho_k=350kg/m^3$

Capacité de retrait axial HCW et HCW-L pour le bois massif et le bois lamellé-croisé						
	HCW	HCW-L				

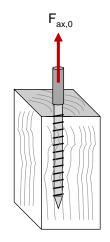

Force-fibre-angle		0 °	90°	0°, 15 clous	0°, 25 clous
Bois massif / CLT	Densité ρ _k [kg/m] ³	F _{ax,0,Rk}	F _{ax,90,Rk}	F _{ax,0,Rk}	F _{ax,0,Rk}
C14	290	8.9	10.9	21.1	30.2
C16	310	9.4	11.5	22.2	31.9
C18	320	9.7	11.8	22.8	32.7
C20	330	9.9	12.1	23.4	33.5
C22	340	10.2	12.4	23.9	34.3
C24	350	10.4	12.7	24.5	35.1
C27	360	10.6	13.0	25.1	35.9
C30	380	11.1	13.6	26.2	37.5
C35	390	11.3	13.8	26.7	38.3
C40	400	11.6	14.1	27.3	39.1
C45	410	11.8	14.4	27.8	39.8
C50	430	12.3	15.0	28.9	41.4

Tableau 6: Valeurs caractéristiques de la capacité de retrait axial HCW dans le bois massif ou le bois lamellécroisé en fonction de la densité du bois en kN

Capacité de retrait axial HCW et HCW-L pour le bois lamellé-collé								
		Н	CW	HCW-L				
Force-fibre-angle		0°	90°	0°, 15 clous	0°, 25 clous			
Bois lamellé- collé	Densité ρ _k [kg/m] ³	F _{ax,0,Rk}	F _{ax,90,Rk}	F _{ax,0,Rk}	F _{ax,0,Rk}			
GL24h	385	11.2	13.7	26.4	37.9			
GL28h	425	12.1	14.8	28.6	41.0			
GL30h	430	12.3	15.0	28.9	41.4			
GL32h	440	12.5	15.3	29.4	42.2			
GL24c	365	10.8	13.1	25.3	36.3			
GL28c	390	11.3	13.8	26.7	38.3			
GL30c	390	11.3	13.8	26.7	38.3			
GL32c	400	11.6	14.1	27.3	39.1			

Tableau 7: Valeurs caractéristiques de la capacité de retrait axial HCW dans le bois lamellé-collé en fonction de la densité du bois en kN

Capacité de retrait axial de la vis bois pour le bois massif, le bois lamellé-collé et le bois lamellé-croisé

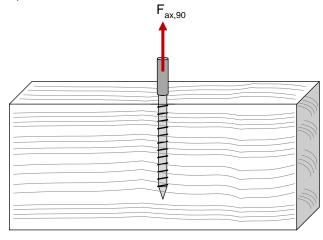


Figure 3: Capacité de retrait axial de la vis bois Forcefibre-angle $\alpha = 0^{\circ}$

Figure 4: Capacité de retrait axial de la vis bois Forcefibre-angle $\alpha = 90^{\circ}$

Analyse selon la norme EN 1995-1-1:

Angle force-fibre
$$\alpha = 90^{\circ}$$
 :
$$F_{ax,\alpha,Rk;\,HSW} = \frac{n_{ef} \cdot f_{ax,k} \cdot d \cdot l_{ef}}{1,2 \cdot \cos^2 \alpha + \sin^2 \alpha} \left(\frac{\rho_k}{\rho_a}\right)^{0.8} \tag{EN 1995-1-1 (8.40a)}$$
 avec
$$f_{ax,k} = 0,52 \ d^{-0,5} l_{ef}^{-0,1} \rho_k^{0.8} \tag{EN 1995-1-1 (8.39)}$$

Angle force-fibre
$$\alpha = 0^{\circ}$$
:
$$F_{ax,\alpha,Rk;\,HSW} = \frac{k_{ax} \cdot n_{ef} \cdot f_{ax,k} \cdot d \cdot l_{ef}}{1,2 \cdot cos^{2}\alpha + sin^{2}\alpha} \left(\frac{\rho_{k}}{\rho_{a}}\right)^{0.8}$$
 ETA 21/0357 Annexe C

avec

$$k_{ax} = 0.3 + \frac{0.7 \cdot \alpha}{45^{\circ}} < 1$$
 ETA 21/0357 Annexe C

¹ Valable uniquement pour la classe de durée de la charge à court terme ou instantanée

Сара	Capacité de retrait axial de la vis bois HSW pour le bois massif et le bois lamellé-croisé										
Profondeur d'encastremen	t l _{ef} [mm]	60		60 80 100		120		140			
Force-fibre-ang	gle	0°	90°	0°	90°	0°	90°	0°	90°	0°	90°
Bois massif / CLT	Densité ρ _k [kg/m] ³	F _{ax,0,Rk}	F _{ax,90,Rk}								
C14	290	1.6	6.4	2.1	8.3	2.5	10.2	3.0	12.0	3.4	13.7
C16	310	1.7	6.8	2.2	8.8	2.7	10.7	3.2	12.6	3.6	14.5
C18	320	1.7	6.9	2.2	9.0	2.7	11.0	3.2	12.9	3.7	14.9
C20	330	1.8	7.1	2.3	9.2	2.8	11.3	3.3	13.3	3.8	15.2
C22	340	1.8	7.3	2.4	9.4	2.9	11.5	3.4	13.6	3.9	15.6
C24	350	1.9	7.5	2.4	9.7	3.0	11.8	3.5	13.9	4.0	16.0
C27	360	1.9	7.6	2.5	9.9	3.0	12.1	3.6	14.2	4.1	16.3
C30	380	2.0	8.0	2.6	10.3	3.2	12.6	3.7	14.9	4.3	17.1
C35	390	2.0	8.1	2.6	10.5	3.2	12.9	3.8	15.2	4.4	17.4
C40	400	2.1	8.3	2.7	10.7	3.3	13.1	3.9	15.5	4.4	17.8
C45	410	2.1	8.5	2.7	11.0	3.3	13.4	3.9	15.8	4.5	18.1
C50	430	2.2	8.8	2.8	11.4	3.5	13.9	4.1	16.4	4.7	18.8

Tableau 8: Valeurs caractéristiques de la capacité de retrait de la vis bois pour le bois massif ou le bois lamellécroisé en fonction de la densité et de la longueur du filetage en kN; les valeurs pour un angle force-fibre de 0° ne sont valables que pour la classe de durée de la charge à court terme ou instantanée.

Capacité de retrait axial de la vis bois HSW pour le bois lamellé-collé

Profondeur d'encastremen	t l _{ef} [mm]	60		60 80 1		10	100 12		20 140		10
Force-fibre-ang	gle	0°	90°	0°	90°	0°	90°	0°	90°	0°	90°
Bois lamellé- collé	Densité ρ _k [kg/m] ³	F _{ax,0,Rk}	F _{ax,90,Rk}								
GL24h	385	2.0	8.0	2.6	10.4	3.2	12.7	3.8	15.0	4.3	17.2
GL28h	425	2.2	8.7	2.8	11.3	3.4	13.8	4.1	16.2	4.7	18.7
GL30h	430	2.2	8.8	2.8	11.4	3.5	13.9	4.1	16.4	4.7	18.8
GL32h	440	2.2	8.9	2.9	11.6	3.5	14.2	4.2	16.7	4.8	19.2
GL24c	365	1.9	7.7	2.5	10.0	3.1	12.2	3.6	14.4	4.1	16.5
GL28c	390	2.0	8.1	2.6	10.5	3.2	12.9	3.8	15.2	4.4	17.4
GL30c	390	2.0	8.1	2.6	10.5	3.2	12.9	3.8	15.2	4.4	17.4
GL32c	400	2.1	8.3	2.7	10.7	3.3	13.1	3.9	15.5	4.4	17.8

Tableau 9: Valeurs caractéristiques de la capacité de retrait de la vis bois pour le bois lamellé-collé en fonction de la densité et de la longueur du filetage en kN; les valeurs pour un angle force-fibre de 0° ne sont valables que pour la classe de durée de la charge à court terme ou instantanée.

Résistance caractéristique à la traction de la vis bois

Analyse selon la norme EN 1995-1-1:

$$F_{t,Rk;HSW} = n_{ef} \cdot f_{tens,k} \tag{EN 1995-1-1 (8.40c)}$$

$$f_{tens,k} = 300 \cdot \pi \cdot \frac{d_i^2}{4} = 300 \cdot \pi \cdot \frac{8.7^2}{4} \cdot 10^{-3} = 17.83 \ kN \tag{DIN 20000-6 : 2015-02 (8)}$$

$$F_{t,Rk;HSW} = 1 \cdot 17.83 = 17.83 \ kN$$

Capacité de charge de cisaillement HCW (résistance à l'encastrement) pour le bois massif, le bois lamellé-collé et le bois lamellé-croisé (CLT)

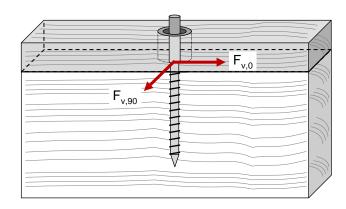


Figure 5: Capacité de charge en cisaillement HCW : force-fibre-anlge 90°.

Valeurs selon ETA 21/0357:

Capacité de charge de cisaillement HCW pour le bois massif, le bois lamellé-collé et le bois lamellé- croisé						
Force-fibre-angle	0°	90°				
a cree man o unigio	F _{v,0,Rk}	F _{v,90,Rk}				
	28.8	12.5				

Tableau 10: Valeurs caractéristiques de la capacité de charge de cisaillement HCW pour le bois massif, le bois lamellé-croisé en kN

Capacité de charge en cisaillement de la vis bois pour le bois massif, le bois lamellé-croisé et le bois lamellé-collé

Analyse selon EN 1995-1-1 chapitre 8.2.3 (connexions acier-bois)

$$F_{v,Rk;HSW} = min \begin{cases} f_{h,k} t_1 d \\ \int_{h,k} t_1 d \left[\sqrt{2 + \frac{4 M_{y,Rk}}{f_{h,k} d t_1^2}} - 1 \right] + \frac{F_{ax,Rk}}{4} \\ 2.3 \sqrt{M_{y,Rk} f_{h,k} d} + \frac{F_{ax,Rk}}{4} \end{cases}$$
 (EN 1995-1-1 (8.10)

avec

$$f_{h,\alpha,k} = \frac{f_{h,0,k}}{k_{90} \sin^2 \alpha + \cos^2 \alpha}$$
 (EN 1995-1-1 (8.31))

$$f_{h,0,k} = 0.082(1 - 0.01d)\rho_k$$
 (EN 1995-1-1 (8.32))

$$d = d_{ef} = 1.1 \cdot d_i$$
 (EN 1995-1-1 Chap. 8.7.1)

$$k_{90} = \begin{cases} 1{,}35 + 0{,}015 \ d & \text{for softwoods} \\ 1{,}30 + 0{,}015 \ d & \text{for LVL} \\ 0{,}90 + 0{,}015 \ d & \text{for hardwoods} \end{cases}$$
 (EN 1995-1-1 (8.33))

$$M_{y,Rk} = 0.3 \cdot f_{u,k} \cdot d_i^{2.6}$$
 (EN 1995-1-1 (8.30))

avec la résistance ultime de l'acier f_{u,k} = 400 N/mm²

(DIN 20000-6 : 2015-02, Chap. 3.3.3)

Dans l'équation 8.10 (d) et (e), le premier terme du côté droit est la capacité de charge selon la théorie du rendement de Johansen, tandis que le deuxième terme Fax,Rk/4 est la contribution de l'effet de corde. La contribution à la capacité de charge due à l'effet de corde doit être limitée à 100 % de la contribution selon la théorie du rendement de Johansen.

Capacité de charge de	e cisaillement de
l'assemblage pour le bo	is massif et le bois
lamellé-croisé, profonde	ur d'encastrement t
=80mm	11
	HCW

=80mm₁					
		НС	W		
Force-fibre-a	ngle	0°	90°		
Bois massif / CLT	Densité ρ _k [kg/m]³	min F _{v,0,Rk}	min F _{v,90,Rk}		
C14	290	8.1	7.0		
C16	310	8.4	7.3		
C18	320	8.6	7.4		
C20	330	8.7	7.6		
C22	340	8.9	7.7		
C24	350	9.0	7.8		
C27	360	9.2	8.0		
C30	380	9.5	8.2		
C35	390	9.6	8.3		
C40	400	9.8	8.5		
C45	410	9.9	8.6		
C50	430	10.2	8.8		

Tableau 11: Valeurs minimales caractéristiques de la capacité de charge de cisaillement de l'assemblage en kN pour le bois massif ou le bois lamellé-croisé à une profondeur d'encastrement de la vis bois de $t_1 = 80 \text{mm}$

Capacité de charge de cisaillement de
l'assemblage pour le bois lamellé-collé,
profondeur d'encastrement t =80mm ₁

		НС	W
Force-fibre-angle		0°	90°
Bois lamellé-	Bois lamellé- Densité ρ _k		min
collé	[kg/m] ³	$F_{v,0,Rk}$	F _{v,90,Rk}
GL24h	385	9.5	8.3
GL28h	425	10.1	8.8
GL30h	430	10.2	8.8
GL32h	440	10.3	9.0
GL24c	365	9.2	8.0
GL28c	390	9.6	8.3
GL30c	390	9.6	8.3
GL32c	400	9.8	8.5

Tableau 12: Valeur minimale caractéristique de la capacité de charge de cisaillement de l'assemblage en kN pour le bois lamellé-collé à une profondeur d'encastrement de la vis bois de t₁ = 80mm

Capacité de charge de cisaillement de l'assemblage pour le bois massif et le bois lamellé-croisé, profondeur d'encastrement t =140mm₁

			W
Force-fibre-angle		0°	90°
Bois massif / CLT			min F _{v,90,Rk}
C14	290	8.7	7.7
C16	310	9.1	8.0
C18	320	9.3	8.1
C20	330	9.4	8.3
C22	340	9.6	8.4
C24	350	9.8	8.6
C27	360	10.0	8.7
C30	380	10.3	9.0
C35	390	10.4	9.2
C40	400	10.6	9.3
C45	410	10.8	9.5
C50	430	11.1	9.7

Tableau 13: Valeurs minimales caractéristiques de la capacité de charge de cisaillement de l'assemblage en kN pour le bois massif ou le bois lamellé-croisé à une profondeur d'encastrement de la vis bois de t₁ = 140mm

Capacité de charge de cisaillement de l'assemblage pour le bois lamellé-collé, profondeur d'encastrement t =140mm₁						
		HC	CW			
Force-fibre-a	angle	0 °	90°			
Bois lamellé- collé	Densité ρ _k [kg/m] ³	min F _{v,0,Rk}	min F _{v,90,Rk}			
GL24h	385	10.4	9.1			
GL28h	425	11.0	9.7			
GL30h	430	11.1	9.7			
GL32h	440	11.2	9.9			
GL24c	365	10.0	8.8			
GL28c	390	10.4	9.2			
GL30c	390	10.4	9.2			
GL32c	400	10.6	9.3			

Tableau 14: Valeurs minimales caractéristiques de la capacité de charge de cisaillement de l'assemblage en kN pour le bois lamellé-collé à une profondeur d'encastrement de la vis bois de t₁ = 140mm

Valeur caractéristique de la résistance de l'acier de la cheville en béton sous charge de traction

Ancrage pour béton	Normes	N _{Rk,s} [kN]
HST3 M12	ETA-98/0001	45.0
HIT HY200 avec tige d'ancrage HAS-U 8.8 M12	ETA-11/0493	67.4

Tableau 15: Valeur caractéristique de la capacité de charge en traction de l'ancrage en béton - rupture de l'acier de l'ancrage en béton sous une charge de traction

Résistance caractéristique de l'ancrage en béton en cas de rupture du cône de béton sous une charge de traction

Analyse selon EN 1992-4 Chapitre 7.2.1.4

$$N_{Rk,c} = N_{Rk,c}^{0} \cdot \frac{A_{c,N}}{A_{c,N}^{0}} \cdot \psi_{s,N} \cdot \psi_{re,N} \cdot \psi_{ec,N} \cdot \psi_{M,N}$$
(EN 1992-4 (7.1))

$$N_{Rk,c}^0 = k_1 \cdot \sqrt{f_{ck}} \cdot h_{ef}^{1.5}$$
 (EN 1992-4 (7.2))

$$A_{c,N}^0 = s_{cr,N} \cdot s_{cr,N} \tag{EN 1992-4 (7.3)}$$

$$s_{cr,N} = 2c_{cr,N} = 3h_{ef}$$

$$A_{c,N} = (c_1 + s_1 + 0.5 \cdot s_{cr,N}) \cdot (c_2 + s_2 + 0.5 \cdot s_{cr,N})$$

si

$$c_1$$
 and $c_2 \le c_{cr,N}$
 s_1 and $s_2 \le s_{cr,N}$

Ancrage pour béton	Normes	h _{ef} [mm]	c ₁ et c ₂ [mm]	N _{Rk,c} [kN]
HST3 M12	ETA-98/0001	70	55	10.0
HIT HY200 avec tige d'ancrage HAS-U 8.8 M12	ETA-11/0493	70	50	9.3

Tableau 16: Valeur caractéristique de la capacité de charge en traction de l'ancrage en béton - rupture du cône de béton sous charge de traction pour le béton fissuré C20/25

Résistance caractéristique en cas de rupture par arrachement de la cheville en béton (cheville à expansion)

Ancrage pour béton	Normes	h _{ef} [mm]	N _{Rk,p} [kN]
HST3 M12	ETA-98/0001	70	20.0

Tableau 17: Valeur caractéristique de la capacité de charge en traction de la cheville en béton - rupture par arrachement de la cheville en béton sous charge de traction pour le béton fissuré C20/25

Arrachement combiné et rupture du béton (pour les fixations collées)

Analyse selon EN 1992-4 Chapitre 7.2.1.6

$$N_{Rk,p} = N_{Rk,p}^{0} \cdot \frac{A_{p,N}}{A_{p,N}^{0}} \cdot \psi_{g,Np} \cdot \psi_{s,Np} \cdot \psi_{re,N} \cdot \psi_{ec,Np}$$
(EN 1992-4 (7.13))

$$N_{Rk,p}^{0} = \psi_{sus} \cdot \tau_{Rk} \cdot \pi \cdot d \cdot h_{ef}$$
 (EN 1992-4 (7.14))

$$s_{cr,Np} = 7.3d(\psi_{sus}\tau_{Rk})^{0.5} \le 3h_{ef}$$
 (EN 1992-4 (7.15))

$$c_{cr,Np} = \frac{s_{cr,Np}}{2}$$
 (EN 1992-4 (7.16))

$$\psi_{g,Np} = \psi_{g,Np}^0 - \left(\frac{s}{s_{cr,Np}}\right)^{0.5} \cdot \left(\psi_{g,Np}^0 - 1\right) \ge 1 \tag{EN 1992-4 (7.17)}$$

avec

$$\psi_{g,Np}^{0} = \sqrt{n} - \left(\sqrt{n} - 1\right) \cdot \left(\frac{\tau_{Rk}}{\tau_{Rk,c}}\right)^{1.5} \ge 1 \tag{EN 1992-4 (7.18)}$$

$$\tau_{Rk,c} = \frac{k_3}{\pi \cdot d} \sqrt{h_{ef} \cdot f_{ck}}$$
 (EN 1992-4 (7.19))

$$\psi_{s,Np} = 0.7 + 0.3 \cdot \left(\frac{c}{c_{cr,Np}}\right) \le 1$$
 (EN 1992-4 (7.20))

$$\psi_{ec,Np} = \frac{1}{1 + 2 \cdot (\frac{e_N}{S_{cr,Np}})} \le 1$$
 (EN 1992-4 (7.21))

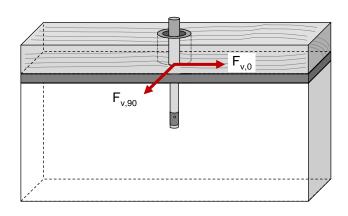
Ancrage en béton	Normes	h _{ef} [mm]	τ _{Rk,cr} [N/mm] ²	c ₁ et c ₂ [mm]	N _{Rk,p} [kN]
HIT HY200 avec tige d'ancrage HAS-U 8.8 M12	ETA-11/0493	70	8.5	50	11.2

Tableau 18: Valeur caractéristique de la capacité de charge en traction de l'ancrage en béton - Rupture combinée de l'arrachement et du béton pour le béton fissuré C20/25 avec Ψ =1_{sus}

Valeurs caractéristiques de la résistance de l'acier de l'ancrage en béton sous une charge de cisaillement sans bras de levier

Analyse selon EN 1992-4 Chapitre 7.2.2.3.1

$$V_{Rks} = k_7 \cdot V_{Rks}^0$$
 (EN 1992-4 (7.35))


Rupture de l'acier, charge de cisaillement sans bras de levier					
Ancrage pour Normes Efficace Résistance Caractéristique Caractéristique ductilité k7 caractéristique					Résistance caractéristique V _{Rk,s} en [kN]
HST3 M12	ETA-98/0001	70	35.4	1.0	35.4

HIT HY200					
avec tige d'ancrage HAS-U 8.8 M12	ETA-11/0493	70	33.7	1.0	33.7

Tableau 19: Valeurs caractéristiques de la capacité de charge en cisaillement de l'ancrage en béton - panne en acier sans bras de levier

Valeurs caractéristiques de la résistance de l'acier de l'ancrage en béton sous une charge de cisaillement avec bras de levier

Analyse selon EN 1992-4 Chapitre 7.2.2.3.2

avec

M12

$$V_{Rk,s,M} = \frac{\alpha_M \cdot M_{Rk,s}}{l_a}$$
 (EN 1992-4 (7.37))

$$M_{Rk,s} = M_{Rk,s}^0 \cdot \left(1 - \frac{N_{Ed}}{N_{Rd,s}}\right)$$
 (EN 1992-4 (7.38))

$$l_a = a_3 + e_1$$
 (EN 1992-4 (6.2))

$$a_3 = 0$$
 (EN 1992-4 Chapitre 6.2.2.3)

$$e_1 = \frac{t_{fix}}{2} + t_{Grout}$$

$$\alpha_{\rm M} = 2.0$$
 (EN 1992-4 Chapitre 6.2.2.3)

30

43.75

4.8

Pour le HCW : $t_{fix} = 27.5 \text{ mm}$

Ancrage pour béton	Normes	Résistance caractéristique à la flexion M ⁰ _{Rk,s} en [Nm]	Mortier de nivellement d'épaisseur t _{Grout} [mm]	Bras de levier effectif l _a [mm]	Résistance caractéristique au cisaillement avec bras de levier V _{Rk,s,M} [kN]
			10	23.75	8.8
HST3 M12	ETA-98/0001	105.0	20	33.75	6.2
			30	43.75	4.8
HIT HY200 avec tige			10	23.75	8.8
d'ancrage HAS-U 8.8	ETA-11/0493	104.6	20	33.75	6.2

Tableau 20: Valeurs caractéristiques de la capacité de charge au cisaillement de l'ancrage en béton - rupture de l'acier avec bras de levier (avec N =0)Ed

Résistance caractéristique de l'ancrage en béton sous une charge de cisaillement - rupture par arrachement du béton

Analyse selon EN 1992-4 Chapitre 7.2.2.4

Ancrage pour béton	Normes	h _{ef} [mm]	c ₁ et c ₂ [mm]	V _{Rk,cp} [kN]
HST3 M12	ETA-98/0001	70	55	27.9
HIT HY200 avec tige d'ancrage HAS-U 8.8 M12	ETA-11/0493	70	50	18.5

Tableau 21: Valeurs caractéristiques de la capacité de charge en cisaillement de l'ancrage en béton - échec de l'arrachage du béton

Résistance caractéristique de l'ancrage en béton sous une charge de cisaillement - rupture de l'arête du béton

Analyse selon EN 1992-4 Chapitre 7.2.2.5

$$V_{Rk,c} = V_{Rk,c}^{0} \cdot \frac{A_{c,V}}{A_{c,V}^{0}} \cdot \psi_{s,V} \cdot \psi_{h,V} \cdot \psi_{ec,V} \cdot \psi_{\alpha,V} \cdot \psi_{re,V}$$
(EN 1992-4 (7.40))

$$V_{Rk,c}^{0} = k_9 \cdot d_{nom}^{\alpha} \cdot l_f^{\beta} \cdot \sqrt{f_{ck}} \cdot c_1^{1.5}$$
 (EN 1992-4 (7.41))

$$\alpha = 0.1 \cdot \left(\frac{l_f}{c_1}\right)^{0.5}$$
 (EN 1992-4 (7.42))

$$\beta = 0.1 * \left(\frac{d_{nom}}{c_1}\right)^{0.2}$$
 (EN 1992-4 (7.43))

Ancrage pour béton	Normes	h _{ef} = I _f [mm]	V _{Rk,c} [kN]
HST3 M12	ETA-98/0001	70	4.7
HIT HY200 avec tige d'ancrage HAS-U 8.8 M12	ETA-11/0493	70	4.1

Tableau 22: Valeurs caractéristiques de la capacité de charge en cisaillement de l'ancrage en béton - rupture de l'arête du béton pour le béton fissuré C20/25

Liste des abréviations (Symboles utilisés)

Lettres majuscules latines

A s Section transversale sous contrainte d'un élément de fixation

F ax,Ed Force axiale de calcul sur la fixation

F ax.Rd Valeur de conception de la capacité de retrait axial de l'élément de fixation

F_{ax,Rk} Capacité de retrait axial caractéristique de l'élément de fixation

F_{t,Rk} Capacité de charge caractéristique de la connexion sous une force de traction

F_{v,Rk} Capacité de charge caractéristique par plan de cisaillement et par fixation

M_{V,Rk} Moment d'élasticité caractéristique de la fixation

N_{Rkc} Résistance caractéristique en cas de rupture du cône de béton sous charge de traction

N_{Rk,p} Résistance caractéristique en cas de rupture par arrachement sous charge de traction

N_{Rk,s} Valeur caractéristique de la résistance de l'acier d'une fixation ou d'un boulon de canal sous une charge de traction

 $V_{Rk,c}$ Résistance caractéristique en cas de rupture d'une arête de béton sous une charge de cisaillement

V_{Rk.cp} Résistance caractéristique en cas de rupture par arrachement du béton sous charge de cisaillement

 $V_{Rk,s}$ Valeur caractéristique de la résistance de l'acier d'une fixation ou d'un boulon de canal sous une charge de cisaillement

V_{Rk,s,M} Résistance caractéristique en cas de rupture de l'acier avec bras de levier sous charge de cisaillement

W_{el} Module d'élasticité de la section calculé à partir de la section transversale sollicitée

Lettres minuscules latines

c₁ Distance des bords dans la direction 1

c₂ Distance au bord dans la direction 2, où la direction 2 est perpendiculaire à la direction 1

c_{cr,N} Distance du bord caractéristique pour assurer la transmission de la résistance caractéristique d'un seul élément de fixation

(c)_{cr,V} ou ancrage d'un canal d'ancrage en cas de rupture du béton sous charge de traction (rupture de l'arête du béton sous charge de cisaillement)

d Diamètre du boulon de l'élément de fixation ou diamètre du filetage

d nom Diamètre extérieur d'un élément de fixation

e 1 Distance entre la charge de cisaillement et la surface du béton

f_{ax,k} Paramètre de retrait caractéristique pour les clous

 f_{ck} Résistance caractéristique nominale à la compression du cylindre (150 mm de diamètre par 300 mm de hauteur)

 $f_{h,i,k}$ Résistance caractéristique à l'encastrement de l'élément en bois i

f tens,k Résistance caractéristique à la traction de la vis

*f*_{uk} Charakteristik résistance ultime de l'acier

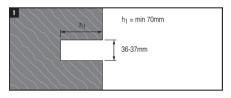
h ef Profondeur d'encastrement effective

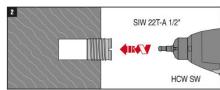
 $k_{\rm d}$ Facteur dimensionnel pour le panneau

 k_{mod} Facteur de modification pour la durée de la charge et la teneur en eau

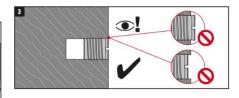
- l a bras de levier effectif de la force de cisaillement agissant sur une fixation ou sur un canal d'ancrage utilisé dans le calcul
- l ef Longueur effective ; longueur effective de la distribution
- *n* ef Nombre effectif de fixations en ligne parallèle au grain
- t épaisseur de l'eau
- t_{fix} Épaisseur de la fixation (Épaisseur de la fixation)
- *t_i* Épaisseur ; l'épaisseur du bois ou du matériau à base de bois ou la profondeur d'encastrement, avec *i* soit 1 ou 2.
- *t grout* Épaisseur de la couche de coulis

Lettres minuscules grecques

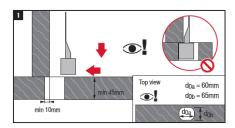

- Angle entre la direction x et la force pour une plaque métallique poinçonnée ; Angle entre une force et la direction du grain ; Angle entre la direction de la charge et le bord (ou l'extrémité) chargé(e)
- β Angle entre la direction du grain et la force pour une plaque métallique poinçonnée
- γ_M Facteur partiel pour les propriétés des matériaux, tenant également compte des incertitudes du modèle et des variations dimensionnelles
- γ _{M,c} Facteur partiel pour les modes de défaillance cône de béton, bord de béton, éclatement du béton et arrachement du béton
- γ M,s Facteur partiel de rupture de l'acier
- y M2 Facteur partiel de résistance à la rupture des sections transversales en traction
- ψ ec,N Facteur prenant en compte l'effet de groupe lorsque des charges de tension différentes agissent sur les fixations individuelles d'un groupe en cas de rupture d'un cône de béton.
- ψ ec,Np Facteur prenant en compte l'effet de groupe lorsque des charges de tension différentes agissent sur les fixations individuelles d'un groupe en cas d'arrachement combiné et de rupture du béton des fixations collées.
- Ψ ec, V Facteur prenant en compte l'effet de groupe lorsque des charges de cisaillement différentes agissent sur les fixations individuelles d'un groupe en cas de rupture d'une arête en béton.
- ψ_{g,Np} Facteur tenant compte d'un effet de groupe pour des fixations collées à faible espacement
- ψ_{h,V} Facteur tenant compte du fait que la résistance des bords du béton n'augmente pas proportionnellement à l'épaisseur de l'élément.
- Ψ_{M,N} Facteur prenant en compte l'effet d'une force de compression entre la fixation et le béton en cas de moments de flexion avec ou sans force axiale
- ψ s,N Facteur prenant en compte la perturbation de la distribution des contraintes dans le béton due à la proximité d'une arête dans l'élément en béton en cas de rupture d'un cône de béton.
- ψ_{s,Np} Facteur prenant en compte la perturbation de la distribution des contraintes dans le béton due à la proximité d'une arête dans l'élément en béton en cas d'arrachement combiné et de rupture du béton des fixations collées.
- Ψ s,v Facteur prenant en compte la perturbation de la distribution des contraintes dans le béton due à la proximité d'autres arêtes dans l'élément en béton en cas de rupture de l'arête du béton.
- ρ a Valeur associée de la densité
- ρ k Densité caractéristique


Instructions d'installation Hilti HCW et HCW-L

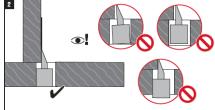
Cadre HCW


1. Fraisage de la découpe en bois

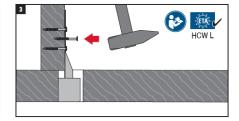
- 2. Régler le connecteur de bois HWC à l'aide de l'outil de
- réglage

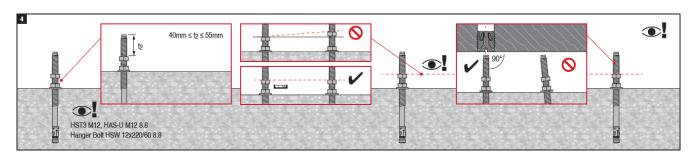


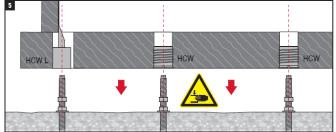
3. Contrôler et vérifier

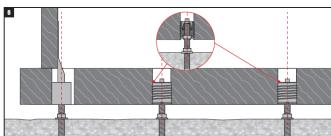


Cadre du HCW-L


1. Positionner le HCW-L


2. Contrôler et vérifier


3. Fixer la plaque d'ongle



4. Vérifier et mettre à niveau le goujon / la vis bois installé

5. Connecter l'élément mural avec le connecteur HCW Wood Connector pré-assemblé à la cheville / à la vis bois.

Références

Normes et documents ETA utilisés

EN 1992-4:2019-04 Eurocode 2 : Calcul des structures en béton - Partie 4

EN 1993-1-1:2010-12 Eurocode 3 : Calcul des structures en acier - Partie 1-1

EN 1995-1-1:2010-12 Eurocode 5 : Calcul des structures en bois - Partie 1-1

ETA-98/0001 du 2021/05/04 Hilti ancrage de goujon HST, HST-R, HST-HCR, HST3, HST3-R

ETA-11/0493 du 2020/12/14 Système d'injection Hilti HIT-HY 200-A

ETA-21/0357 du 2022/04/25 Elément de fixation Hilti HCW, HCW L

DIN 20000-6:2015-02 Application des produits de construction dans les structures - Partie 6 :

Fixations et connecteurs à chevilles selon DIN EN 14592 et DIN EN 14545