

HAC-V

Rail d'ancrage coulé en place

Fiche technique

Mise à jour : Avr-23

HAC-V TCRS

Rails d'ancrage coulés en place de tailles et longueurs standards pour application courante

Version du rail d'ancrage **Avantages** - Solution haute performance - conçue HBC-C pour des paramètres de chargement et HBC-C-E de conception complexes; HBC-C-N - Homologué pour les charges statiques, HBC-T sismiques (ICC-ESR 3520), de fatigue et HBC-B d'incendie; - Personnalisable - options disponibles pour pratiquement toutes les HAC-V 35 spécifications; HAC-V 40 HAC-V 50 - Fabrication à faible consommation HAC-V 60 d'énergie - les rails peuvent contribuer à **HAC-V 70** la certification environnementale des projets; HAC-V-T 30

HAC-V-T 50

HAC-V-T 70

Matériau support

Béton(nonfissuré)

Béton (fissuré)

Type de chargement

Statique/ quasistatique

e/ Fatigue

Sismique

- Fabrication de haute précision

Tenue au feu

Statique Chargement 2D

Statique Chargement 3D

Autre information

Evaluation Technique Européenne

Conformité CE

Logiciel de conception PROFIS Rail d'ancrage

Résistance à la corrosion

Homologation / certificats

Description	Autorité / Laboratoire	No. / date d'obtention
Agrément Technique Européen a)	DIBt, Berlin	ETA-11/0006 du 24.10.2022

a) Toutes les données fournies dans cette section sont conformes à l'ETA-11/0006 du 24.10.2022

Chargement statique et quasi-statique

Toutes les données de cette section s'appliquent à :

- Installation correcte (Voir guide d'installation)
- Pas d'influence des entraxes ni de la distance au bord
- Pas d'influence du type ni du diamètre de boulon
- Mode de rupture déterminant flexion locale des lèvres du rail
- Charge de cisaillement perpendiculaire à l'axe longitudinal du rail

Profondeur d'ancrage effective

•										
Type de rail d'ancrage					HAC-V		HAC-V-T			
Taille du rail d'ancrage			35	40	50	60	70	30	50	70
Profondeur d'ancrage effective minimale a)	$h_{\text{ef},\text{min}}$	[mm]	91	91	71	148	175	68	71	175
Epaisseur minimale de l'élément en béton a) b)	h _{min}	[mm]	105	105	90	168	196	80	90	196

- a) HAC-V 50, 60, 70 and HAC-V-T 50, 70 sont produits avec différentes longeurs et sont également disponibles avec des profondeurs d'ancrages important, ce qui va mener à une capacité du cône de béton plus importante. Des informations supplémentaires sont présentées dans les détails d'installation;
- b) L'épaisseur minimale de l'élément en béton dépend de la distance au bord minimale. Des informations supplémentaires sont présentées dans les détails d'installation.

Résistane caractéristique

Type de rail d'ancrage					HAC-V		HAC-V-T			
Taille du rail d'ancrage			35	40	50	60	70	30	50	70
Traction	N^0 Rk,s,I	[kN]	31,4	31,4	41,0	55,0	71,0	19,9	41,0	71,0
Cisaillement	$V^0_{Rk,s,l}$	[kN]	37,4	37,4	55,0	82,9	102,9	27,7	60,5	118,8

Résistance de calcul

Type de rail d'ancrage					HAC-V		HAC-V-T			
Taille du rail d'ancrage			35	40	50	60	70	30	50	70
Traction	N^0 Rd,s,I	[kN]	17,4	17,4	22,8	30,6	39,4	11,1	22,8	39,4
Cisaillement	$V^0_{Rd,s,l}$	[kN]	20,8	20,8	30,6	46,1	57,2	15,4	33,6	66,0

Résistance caractéristique des boulons de rail

Diamètre du	boulon			M10	M12	M16	M20
Type de bou	lon				HB	C-B	
Traction	HBC-B 4.6	NI	[LAN]	23,2	33,7	_ a)	_ a)
Traction	HBC-B A4-50	─ N _{Rk,s}	[kN]	29,0	42,2	_ a)	_ a)
Cisaillement	HBC-B 4.6		[LA]]	13,9	20,2	_ a)	_ a)
Cisalilement	HBC-B A4-50	─ V _{Rk,s}	[kN]	17,4	25,3	_ a)	_ a)
Type de bou	lon				HBC-C /	HBC-C-E	
	HBC-C / HBC-C-E 4.6			23,2	33,7	62,8	98,0
Traction	HBC-C / HBC-C-E 8.8	$N_{Rk,s}$	[kN]	46,4	67,4	125,6	174,3
	HBC-C / HBC-C-E A4-50			29,0	42,2	78,5	122,5
	HBC-C / HBC-C-E 4.6			13,9	20,2	37,7	58,8
Cisaillement	HBC-C / HBC-C-E 8.8	$V_{Rk,s}$	[kN]	23,2	33,7	62,8	101,7
	HBC-C / HBC-C-E A4-50			17,4	25,3	47,1	73,5
Type de bou	lon				НВС	-C-N	
Traction	HBC-C-N 8.8	$N_{Rk,s}$	[kN]	_ a)	67,4	125,6	174,3
Cisaillement	HBC-C-N 8.8	$V_{Rk,s}$	[kN]	_ a)	33,7	62,8	101,7
Type de bou	lon				HB	C-T	
Traction	HBC-T 8.8	$N_{Rk,s}$	[kN]	_ a)	67,4	125,6	174,3
Cisaillement	HBC-T 8.8	$V_{Rk,s}$	[kN]	_ a)	33,7	62,8	101,7

a) Le produit n'est pas disponible dans la gamme standard de Hilti. Pour plus d'informations, veuillez contacter l'équipe d'ingénierie de Hilti.

Résistance de calclul des boulons de rail

Diamètre du	boulon			M10	M12	M16	M20
Type de bou	lon				HB	С-В	
Traction	HBC-B 4.6	─ N _{Rd,s}	[LA]]	11,6	16,9	_ a)	_ a)
Traction	HBC-B A4-50	I N Rd,s	[kN]	10,1	14,8	_ a)	_ a)
Cisaillement	HBC-B 4.6	— V _{Rd,s}	[LA]]	8,3	12,1	_ a)	_ a)
Cisaillement	HBC-B A4-50	V Rd,s	[kN]	7,3	10,6	_ a)	_ a)
Type de bou	lon				HBC-C /	HBC-C-E	
	HBC-C / HBC-C-E 4.6			11,6	16,9	31,4	49,0
Traction	HBC-C / HBC-C-E 8.8	$N_{Rd,s}$	[kN]	30,9	44,9	83,7	116,2
	HBC-C / HBC-C-E A4-50			10,1	14,8	27,4	42,8
	HBC-C / HBC-C-E 4.6			8,3	12,1	22,6	35,2
Cisaillement	HBC-C / HBC-C-E 8.8	$V_{Rd,s}$	[kN]	18,6	27,0	50,2	67,8
	HBC-C / HBC-C-E A4-50			7,3	10,6	19,8	30,9
Type de bou	lon				НВС	-C-N	
Traction	HBC-C-N 8.8	$N_{Rd,s}$	[kN]	_ a)	44,9	83,7	116,2
Cisaillement	HBC-C-N 8.8	$V_{Rd,s}$	[kN]	_ a)	27,0	50,2	67,8
Type de bou	lon				HB	C-T	
Traction	HBC-T 8.8	$N_{Rd,s}$	[kN]	_ a)	44,9	83,7	116,2
Cisaillement	HBC-T 8.8	$V_{Rd,s}$	[kN]	_ a)	27,0	50,2	67,8

b) Le produit n'est pas disponible dans la gamme standard de Hilti. Pour plus d'informations, veuillez contacter l'équipe d'ingénierie de Hilti.

Note: Les effets combinés des charges (traction et cisaillement) doivent être vérifiés à part. Pour un dimensionnement détaillé, utiliser le logiciel PROFIS Rail d'ancrage de Hilti, consulter le document ETA-11/0006 ou contacter l'équipe d'ingénierie de Hilti.

Chargement sismique

Toutes les données de cette section s'appliquent à :

- Installation correcte (Voir guide d'installation)
- Pas d'influence des entraxes ni de la distance au bord
- Pas d'influence du type ni du diamètre de boulon
- Mode de rupture déterminant flexion locale des lèvres du rail
- Charge de cisaillement perpendiculaire à l'axe longitudinal du rail

Profondeur d'ancrage effective

Type de rail d'ancrage					HAC-V			HAC-V-T			
Taille du rail d'ancrage			35	40	50	60	70	30	50	70	
Profondeur d'ancrage effective minimale a)	h _{ef,min}	[mm]	91	91	71	148	175	68	71	175	
Epaisseur minimale de l'élément en béton a) b)	h _{min}	[mm]	105	105	90	168	196	80	90	196	

- a) HAC-V 50, 60, 70 and HAC-V-T 50, 70 sont fournis en différentes longeurs et sont également disponibles avec des profondeurs d'ancrages importantes, ce qui va mener à une capacité du cône de béton plus importante. Des informations supplémentaires sont présentées dans les détails d'installation;
- L'épaisseur minimale de l'élément en béton dépend de la distance au bord minimale. Des informations supplémentaires sont présentées dans les détails d'installation.

Résistance caractéristique

Type de rail d'ancra	ige				HAC-V			HAC-V-T				
Taille du rail d'ancra		35	40	50	60	70	30	50	70			
Catégorie de performance sismique C1												
Traction	N ⁰ Rk,s,l,eq	[kN]	31,4	31,4	40,0	40,0	71,0	19,9	41,0	71,0		
Cisaillement	V ⁰ Rk,s,l,eq	[kN]	37,4	37,4	55,0	55,0	102,9	27,7	60,5	118,8		

Résistance de calcul

Type de rail d'ancra	ige				HAC-V			HAC-V-T				
Taille du rail d'ancr	35	40	50	60	70	30	50	70				
Catégorie de performance sismique C1												
Traction	N^0 Rd,s,l,eq	[kN]	17,4	17,4	22,8	30,6	39,4	11,1	22,8	39,4		
Cisaillement	V ⁰ Rd,s,l,eq	[kN]	20,8	20,8	30,6	46,1	57,2	15,4	33,6	66,0		

Tenue au feu

Toutes les données de cette section s'appliquent à :

- Installation correcte (Voir guide d'installation)
- Pas d'influence des entraxes ni de la distance au bord
- Pas d'influence du type ni du diamètre de boulon
- Mode de rupture déterminant rupture de l'acier

(un des suivants : ancrage, connexion entre le rail et l'ancrage, flexion locale des lèvres du rail)

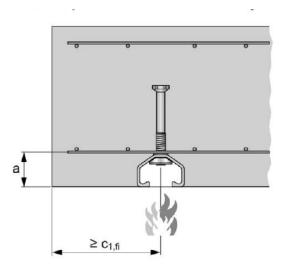
- Charge de cisaillement perpendiculaire à l'axe longitudinal du rail
- Coefficient partiel de sécurité pour les actions sous charge d'incendie $\gamma_{M,fi}$ =1,0 (en l'absence d'autres données réglementaires nationales)

Profondeur d'ancrage effective

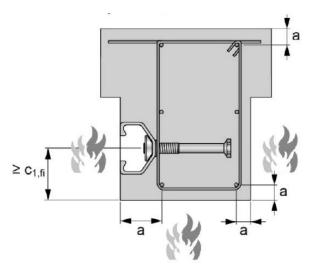
Type de rail d'ancrage					HAC-V		HAC-V-T			
Taille du rail d'ancrage			35	40	50	60	70	30	50	70
Profondeur d'ancrage minimale ^{a)}	$h_{\text{ef},\text{min}}$	[mm]	91	91	71	148	175	68	71	175
Epaisseur minimale de l'élément en béton a) b)	h _{min}	[mm]	105	105	90	168	196	80	90	196

- a) HAC-V 50, 60, 70 and HAC-V-T 50, 70 sont fournis en différentes longeurs et sont également disponibles avec des profondeurs d'ancrages importantes, ce qui va mener à une capacité du cône de béton plus importante. Des informations supplémentaires sont présentées dans les détails d'installation;
- b) L'épaisseur minimale de l'élément en béton dépend de la distance au bord minimale. Des informations supplémentaires sont présentées dans les détails d'installation.

Résistance caractéristique


	o caracterionque										
Type de ra	il d'ancrage					HAC-V			HAC-	V-T (dei	ntelé)
Taille du ra	ail d'ancrage			35	40	50	60	70	30	50	70
Exposition	au feu R60										
Traction _	Boulon M10			1,7	1,7	1,7	1,7	1,7	1,3	-	-
=	Boulon M12	N _{Rk,s,fi}	[LAN]]	2,4	2,4	2,4	2,4	2,4	1,8	-	-
Cisaille-	Boulon M16	– = _ V _{Rk,s,fi}	[kN]	2,4	2,4	4,0	4,0	4,0	-	-	-
ment	Boulon M20	— • IXX,3,II		2,4	2,4	4,0	4,7	4,7	-	-	-
Exposition	au feu R120										
Traction	Boulon M10			1,0	1,0	1,0	1,0	1,0	0,7	-	-
=	Boulon M12	N _{Rk,s,fi}	[LAN]]	1,5	1,5	1,5	1,5	1,5	0,8	-	-
Cisaille-	Boulon M16	– = – V _{Rk,s,fi}	[kN]	1,5	1,5	1,6	1,6	1,6	-	-	-
ment	Boulon M20	— • I(K,S,II		1,5	1,5	1,6	2,1	2,1	-	-	-

Résistance de calcul


Type de ra	il d'ancrage					HAC-V			HAC-	V-T (dei	ntelé)
Taille du ra	ail d'ancrage			35	40	50	60	70	30	50	70
Exposition	au feu R60										
Traction _	Boulon M10			1,7	1,7	1,7	1,7	1,7	1,3	-	-
=	Boulon M12	N _{Rd,s,fi}	[[_N]]	2,4	2,4	2,4	2,4	2,4	1,8	1	-
Cisaille-	Boulon M16	= _ V _{Rd,s,fi}	[kN]	2,4	2,4	4,0	4,0	4,0	-	-	-
ment	Boulon M20	— ▼ I\u,5,ii		2,4	2,4	4,0	4,7	4,7	-	-	-
Exposition	au feu R120										
Traction _	Boulon M10			1,0	1,0	1,0	1,0	1,0	0,7	1	-
=	Boulon M12	N _{Rd,s,fi}	[LAN]]	1,5	1,5	1,5	1,5	1,5	0,8	-	-
Cisaille-	Boulon M16	– = – V _{Rd,s,fi}	[kN]	1,5	1,5	1,6	1,6	1,6	-	1	-
ment	Boulon M20			1,5	1,5	1,6	2,1	2,1	-	1	-

Distance minimale par rapport à l'axe du renforcement sur le bord

Type de rail d'ancrage			HAC-V					HAC-V-T (dentelé)		
Taille du rail d'ancrage			35	40	50	60	70	30	50	70
Exposition au feu R60										
Distance à l'axe minimale	а	[mm]	35	35	50	50	50	35	-	-
Exposition au feu R120										
Distance à l'axe minimale	а	[mm]	60	60	60	65	70	60	-	-

Exposition au feu sur un côté uniquement

Exposition au feu sur plusieurs côtés

Résistance à la fatigue

Toutes les données de cette section s'appliquent à :

- Installation correcte (Voir guide d'installation)
- Pas d'influence des entraxes ni de la distance au bord
- Pas d'influence du type ni du diamètre de boulon
- Charge de cisaillement perpendiculaire à l'axe longitudinal du rail

Combinaision de rails d'ancrage et de boulons de rails sous charge de fatigue

Rail d'ancrage	Type de boulon	Diamètre	Classe d'acier	Protection contre la corrosion	
HAC-V-T 30	НВС-В	M10	4.6		
HAC-V-1 30	пвс-в	M12	4.0		
		M12			
HAC-V 35 HAC-V 40		M16	4.6	G a)	
1170 1 40		M20			
HAC-V 50	HBC-C	M16		F (HDG) ^{b)}	
HAC-V 50	пвс-с	M20	8.8		
HAC V 60		M16			
HAC-V 60		M20			
HAC-V 70		M20			

a) Galvanisé

Résistance caractéristique

Type de rail d'ancrage	Type de rail d'ancrage					HAC-V			
Taille du rail d'ancrage				35	40	50	60	70	30
	≤ 10 ⁶			1,57	1,57	2,66	3,54	6,44	1,76
Résistance caractéristique à	≤ 3·10 ⁶	_				2,6	3,5		
la fatigue, sous charge de traction, après n cycles de	≤ 10 ⁷	A N I	[kN]		1,5			6,4	
charge sans précharge	≤ 3·10 ⁷	- ΔN _{Rk,s,0,n}		1,5					1,6
statique	≤ 6·10 ⁷	_							İ
	> 6·10 ⁷	-							
	≤ 10 ⁶					(0,600		
Facteur de réduction après n	≤ 3·10 ⁶	-	[-]	0,571					
cycles de charge sans	≤ 10 ⁷			0,542					
précharge statique pour : $\Delta N_{Rk,p,0,n} = \eta_{c,fat} \cdot N_{Rk,p}$	≤ 3·10 ⁷	η _{c,fat}		0,516					
$\Delta N_{Rk,c,0,n} = \eta_{c,fat} \cdot N_{Rk,c}$	≤ 6·10 ⁷	-		0.500					
	> 6·10 ⁷	-		0,500					
Résistance caractéristique de fatigue sans précharge statique	$(n \to \infty)$	$\Delta N_{\text{Rk,s,0,}}$	[kN]	1,5	1,5	2,6	3,5	6,4	1,6
Résistance caractéristique à la fatigue, sans précharge statique ($N_{Ed}=0$) pour : $\Delta N_{Rk,p,0,n}=\eta_{c,fat}\cdot N_{Rk,p}$ $\Delta N_{Rk,c,0,n}=\eta_{c,fat}\cdot N_{Rk,c}$	(n → ∞)	η _{c,fat}	[-]				0,5		

b) Galvanisé à chaud

Matériaux

Qualité des matériaux du rail d'ancrage

Partie		Materiau
Profilé du rail	HAC-V F	Acier au carbone conforme à l'EN 10025:2004 Galvanisé à chaud ≥ 50 μm ^{a)} or ≥ 70 μm ^{b)} conforme à l'EN ISO 1461:2009
Rivet	HAC-V F	Acier au carbone Galvanisé à chaud ≥ 45 µm conforme à l'EN ISO 1461:2009
Ancrage	HAC-V F	Acier au carbone Galvanisé à chaud ≥ 45 µm conforme à l'EN ISO 1461:2009

- Pour HAC-V-T 30F, HAC-V 35F, HAC-V 40 F, HAC-V-50 F, HAC-V-T 50 F; Pour HAC-V 60 F, HAC-V-70 F, HAC-V-T-70 F

Qualité des matériaux du boulon de rail

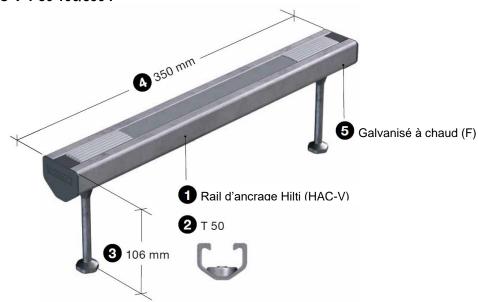
Part		Material
	НВС	Acier au carbone classe 4.6 and 8.8 conforme à l'EN ISO 898-1:2013 Electrozingué ≥ 8 µm conforme au DIN EN ISO 4042: 1999
Boulon HBC F		Acier au carbone classe 4.6 and 8.8 conforme à l'EN ISO 898-1:2013 Galvanisé à chaud ≥ 45 µm conforme à l'EN ISO 1461: 2009
	HBC A4	Acier inoxydable classe 50 conforme à l'EN ISO 3506-1: 1.4401 / 1.4404 / 1.4571 / 1.4362 / 1.4578 / 1.4439
	Galvanisé	Acier au carbone Classe de dureté A ≥ 200 HV Electrozingué ≥ 8 µm conforme au DIN EN ISO 4042: 1999
Rondelle	F	Acier au carbone Classe de dureté A ≥ 200 HV Galvanisé à chaud ≥ 45 µm conforme à l'EN ISO 1461: 2009
	A4	Acier inoxydable Classe de dureté A ≥ 200 HV 1.4401 / 1.4404 / 1.4571 / 1.4362 / 1.4578 / 1.4439
	Galvanisé	Acier au carbone Classe de propreté 8 conforme à l'EN ISO 898-2: 2012 Electrozingué ≥ 8 μm
Ecrou hexagonal ^{a)}	F	Acier au carbone Classe de propreté 8 conforme à l'EN ISO 898-2: 2012 Galvanisé à chaud ≥ 45 µm conforme à l'EN ISO 1461: 2009
	A4	Acier inoxydable Classe de propreté 70 conforme à l'EN ISO 3506-2: 2009 1.4401 / 1.4404 / 1.4571 / 1.4362 / 1.4578 / 1.4439

Ecrou héxagonal conforme au DIN 934: 1987-10 pour boulons de rail en acier au carbone (4.6) et en acier inoxydable

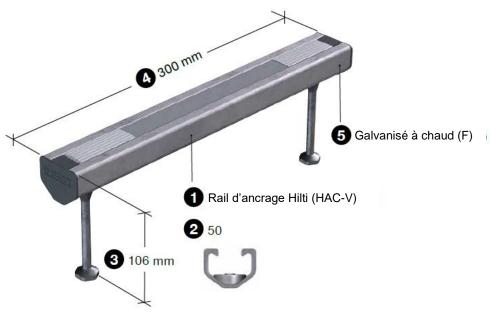
Propriétés mécaniques

Partie				HAC-V / HBC	
Résistance	Acier au carbone 4.6			400	
nominale en	Acier au carbone 8.8	f_{uk}	[N/mm²]	800 / 830 ^{a)}	
traction	Acier inoxydable A4-50			500	
	Acier au carbone 4.6			240	
Limite élastique	Acier au carbone 8.8	f_{yk}	$[N/mm^2]$	640 / 660 ^{a)}	
	Acier inoxydable A4-50			210	

a) Material properties conforme à l'EN ISO 898-1

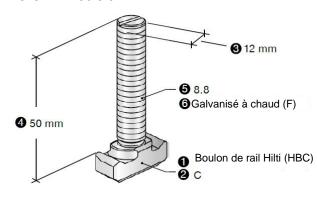

Classe de corrosion

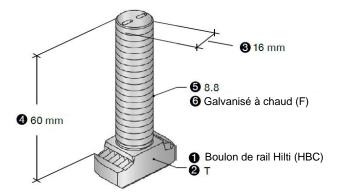
Classe / Marque	Matériau / Type de revêtement
G	Acier au carbone, Electrozingué
F (HDG)	Acier au carbone, Galvanisé à chaud
R (A4)	Acier inoxydable


Nomenclature du rail d'ancrage HAC-V (exemple)

Type de rail d'ancrage Hilti	Type de profile et taille	Profondeur d'ancrage effective	Longueur du rail	Finition ou matériau
1	2	3	4	6
HAC-V	T 50	106	350	F (HDG)
HAC-V	50	106	300	F (HDG)

HAC-V-T 50 106/350 F

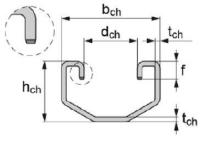

HAC-V 50 106/300 F

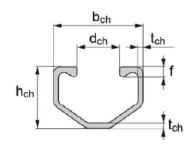

Nomenclature des boulons de rail HBC (exemple)

· · · · · · · · · · · · · · · · · · ·									
boulons de rail Hilti	Type de boulon	Diamètre	Longueur	Class d'acier	Finition ou matériau				
0	2	3	4	6	6				
HBC	С	M12	50	8.8	F (HDG)				
HBC	Т	M16	60	8.8	F (HDG)				

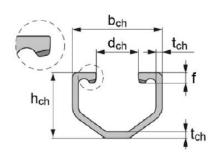
HBC-C M12x50 8.8 F

HBC-T M16x60 8.8 F

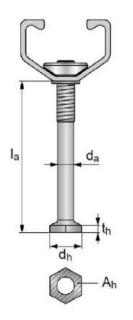


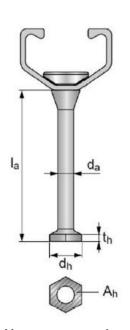

Dimensions des rails d'ancrage

Dimensions du profilé des rails

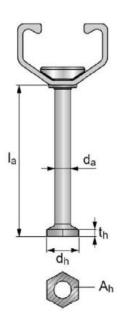

Type de rail d'ancrage				HAC-V				HAC-V-T (dentelé)		
Taille du rail d'ancrage			35	40	50	60	70	30	50	70
Largeur du rail	b _{ch}	[mm]	40,9	40,9	41,9	43,4	45,4	41,3	41,9	45,4
Hauteur du rail	h _{ch}	[mm]	28,0	28,0	31,0	35,5	40,0	25,6	31,0	40,0
Épaisseur nominale	tch	[mm]	2,25	2,25	2,75	3,50	4,50	2,00	2,75	4,50
Ouverture du rail	d _{ch}	[mm]	19,5	19,5	19,5	19,5	19,5	22,3	19,5	19,5
Hauteur des lèvres rail	f	[mm]	4,5	4,5	5,3	6,3	7,4	7,5	5,3	7,1
Moment d'inertie	lу	[mm ⁴]	21463	21463	33125	57930	95457	15349	33125	92192

HAC-V-T 30


HAC-V 35, HAC-V 40, HAC-V 50, HAC-V 60, HAC-V 70


HAC-V-T 50, HAC-V-T 70

Dimensions des ancrages


Type de rail d'ancrage			HAC-V					HAC-V-T (dentelé)		
Taille du rail d'ancrage			35	40	50	60	70	30	50	70
Longueur min de l'ancrage	min. la	[mm]	66,0	66,0	78,5	117,0	140,0	44,4	78,5	14,0
Diamètre de l'ancrage	d_a	[mm]	7,2	7,2	9,0	9,0	10,9	5,4	9,0	10,9
Diamètre de la tête ronde de l'ancrage	dh	[mm]	17,5	17,5	19,5	19,5	23,0	11,5	19,5	23,0
Epaisseur de la tête ronde de l'ancrage	t _h	[mm]	3,0	3,0	3,5	4,5	5,0	2,0	3,5	5,0
Surface de la tête ronde de l'ancrage	Ah	[mm]	209,0	209,0	258,0	258,0	356,0	89,0	258,0	356,0

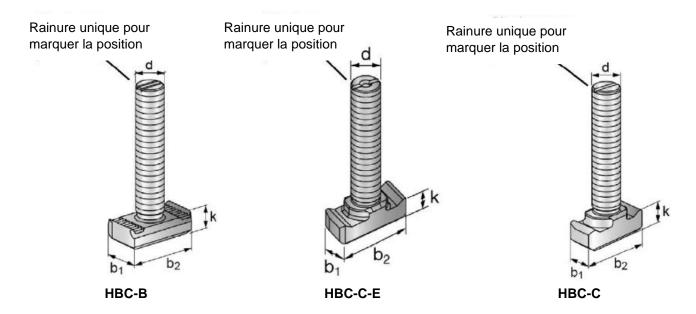
HAC avec ancrage bouloné

HAC-V avec ancrage bouloné

Ancrage soudé

Dimension des boulons de rail

Dimension des boulons de rail

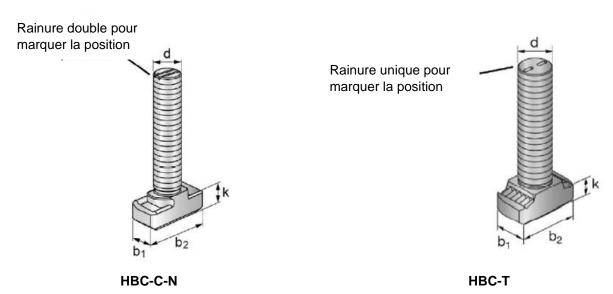

Type de boulon			НВ	нвс-в				
Rail d'ancrage approprié			HAC-V-T 30					
Diamètre nominal	d	[mm]	10,0	12,0				
Largeur (1)	b ₁	[mm]	1!	9,0				
Largeur (2)	b ₂	[mm]	34,0					
Epaisseur	k	[mm]	g),2				

Dimension des boulons de rail

Type de boulon			HBC-C-E				
Rail d'ancrage approp	orié		HAC-V 35 ; HAC-V 40 ; HAC-V 50				
Diamètre nominal	d	[mm]	12,0	16,0			
Largeur (1)	b ₁	[mm]	14,0	17,0			
Largeur (2)	b ₂	[mm]	33	3,0			
Epaisseur	k	[mm]	10,4	13,4			

Dimension des boulons de rail

Type de boulon			HBC-C					
Rail d'ancrage approp	orié		HAC-V 35 ; HAC-V 40 ; HAC-V 50 ; HAC-V 60 ; HAC-V 70					
Diamètre nominal	d	[mm]	10,0	10,0 12,0 16,0				
Largeur (1)	b ₁	[mm]	14	l,0	18	18,5		
Largeur (2)	b ₂	[mm]	33,0					
Epaisseur	k	[mm]	10	13,9				

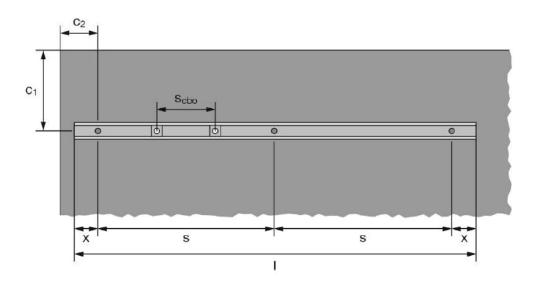


Dimension des boulons de rail

Type de boulon			HBC-C-N							
Rail d'ancrage approp	rié		HAC-V 35 ; HAC-V 40 ; HAC-V 50 ; HAC-V 60 ; HAC-V 70							
Diamètre nominal	d	[mm]	12,0 16,0 20,0							
Largeur (1)	b ₁	[mm]		18,5						
Largeur (2)	b ₂	[mm]	33,0							
Epaisseur	k	[mm]	11,4 13,9							

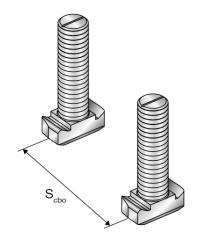
Dimension des boulons de rail

Type de boulon			HBC-T						
Rail d'ancrage approp	rié		HAC-T 50 ; HAC-T 70 ; HAC-V-T 50 ; HAC-V-T 70						
Diamètre nominal	d	[mm]	12,0	16,0	20,0				
Largeur (1)	b ₁	[mm]		18,5					
Largeur (2)	b ₂	[mm]		35,4					
Epaisseur	k	[mm]		12,0					



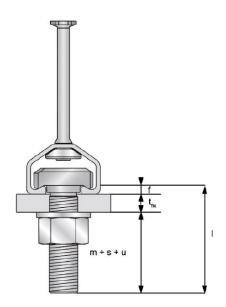
Information d'installation

Détails d'installation pour les rails d'ancrage


Type de rail d'ancrage				HAC-V								HAC-V-T (dentelé)						
Taille du rail d'ancrage			35 40 50			60		70		30	50		70		0			
Profonfeur d'ancrage effective minimale	h _{ef,min}	[mm]	91	91	110	7	1	106	148	183	175	295	68	7	1	106	175	295
Entraxe minimale	Smin	[mm]	100	100		100	150	100	10	00	10	100		100	150	100	10	00
Entraxe maximale	Smax	[mm]	250	250 250			250		250		250		250	250			250	
Espacement aux extrémités	Х	[mm]	25	2	:5	25			25		2	:5	25		25		2	5
Longueur min de rail	I_{min}	[mm]	150	1	50	150	200	150	15	50	1	50	100	150	200	150	15	50
Distance au bord min	C _{min}	[mm]	50	50		50	100	50	75	63,5	75	63,5	50	50	100	50	75	63,5
Epaisseur min de l'élement en béton	h _{min}	[mm]	105	105	125	125	90	125	168 h _{ef}	400 + t _h +		400 a)	80	125	90	125	196	400

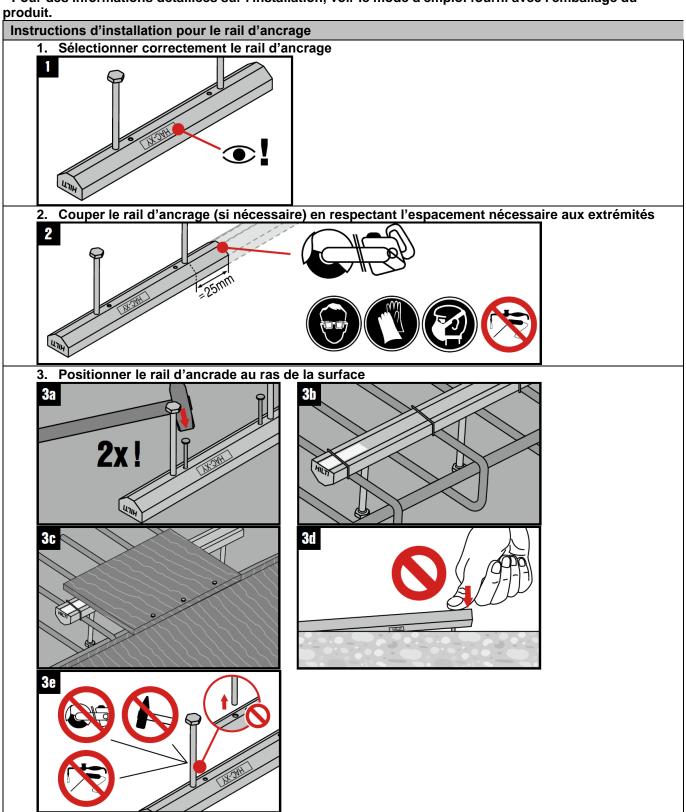
a) c_{min} conforme à l'EN 1992-1-1:2004 + AC2010

Détails d'installation pour les boulons de rail

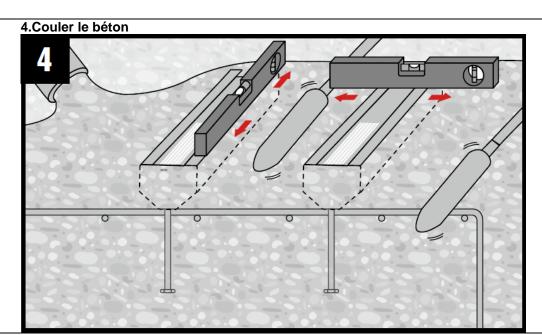

Diamètre du boulon			M10	M12	M16	M20
Entraxe minimal entre les boulons	Scbo,min	[mm]	50	60	80	100

Détermination de la longueur minimale nécessaire du boulon en T

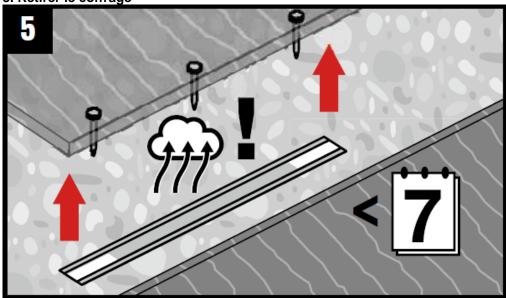
Type de rail d'ancrage						HAC-V	HAC-V-T (dentelé)				
Taille du rail d'ancra	age			35	40	50	60	70	30	50	70
Type de boulon				Н	BC-C(-E	Ξ)	НВ	C-C	нвс-в	НВ	C-T
Hauteur de la lèvre du rail		f	[mm]	4,5	4,5	5,3	6,3	7,4	7,5	5,2	7,1
Épaisseur de l'écrou, de la rondelle et de la projection du boulon de rail	Bolt M10	m		13,9	13,9	13,9	13,9	13,9	13,9	-	-
	Bolt M12	+	[mm]	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3
	Bolt M16	S +	[mm]	21,8	21,8	21,8	21,8	21,8	-	21,8	21,8
	Bolt M20	u		-	-	27,0	27,0	27,0	-	27,0	27,0

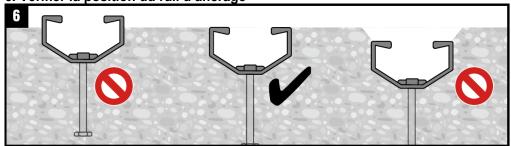

Dimensions

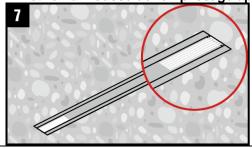
I	[mm]	Longueur nominale du boulon de rail
t _{fix}	[mm]	épaisseur de fixation (épaisseur de la pièce à fixer)
f	[mm]	hauteur de la lèvre du rail
m	[mm]	épaisseur de l'écrou (ISO 4032)
S	[mm]	épaisseur de la rondelle
u	[mm]	projection du boulon de rail

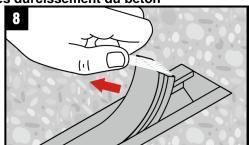

Longueur nécessaire : $I = t_{fix} + f + (m + s + u)$

Instructions d'installation

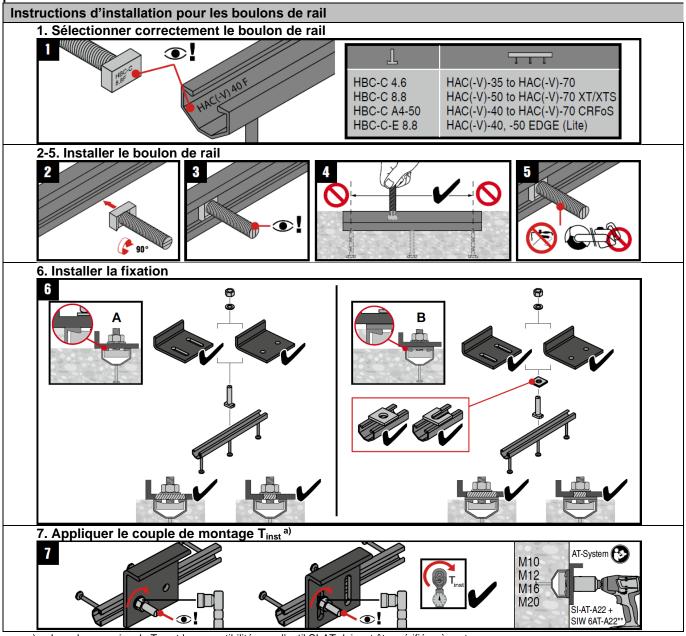

* Pour des informations détaillées sur l'installation, voir le mode d'emploi fourni avec l'emballage du




5. Retirer le coffrage



6. Vérifier la position du rail d'ancrage



7. Retirer la mousse de remplissage après durcissement du béton

* Pour des informations détaillées sur l'installation, voir le mode d'emploi fourni avec l'emballage du produit

a) La valeur requise de T_{inst} et la compatibilité avec l'outil SI-AT doivent être vérifiées à part