RESINE D'INJECTION HIT- MM PLUS

Fiche technique du produit

Mise à jour : 24 octobre

Sur béton Page no. :02

Sur maçonnerie Page no. :10

RESINE D'INJECTION HIT- MM PLUS

Fiche technique du produit Sur béton

Mise à jour : octobre 2024

Résine d'injection HIT-MM Plus

Conception des ancrages (EN 1992-4) / Tiges, manchons et barres d'armature / Béton

Système de mortier injecté

Hilti HIT-MM Plus 300 ml

(également disponible en 500 ml)

Tiges d'ancrage : HAS-U HAS-U HDG HAS-U A4 HAS-U HCR (M8-M16)

Manchons filetés à l'intérieur : HIS-N (R) (M8-M12)

Avantages

- Fixation par injection chimique
- Mortier hybride à deux composants
- Durcissement rapide
- Convient aux fixations aériennes
- Manipulation polyvalente et conventionnelle
- Propre et simple d'utilisation
- Faible distance entre les bords et espacement des ancrages
- Rapport de mélange toujours correct

Fer à béton (φ8 - φ16)

Conditions d'application

Matériau de base

Béton (non fissuré)

Conditions de charge

Statique/ quasistatique

Conditions d'installation

Forage au marteau

Autres informations

Hilti Données techniques

Agréments/certificats et instructions d'utilisation liés

Agréments / Certificats

Numéro d'approbation.	Application / condition de chargement	Autorité / Laboratoire	Date d'émission
ETA-17/0199	Statique et quasi-statique	DIBt, Berlin	30-08-2019

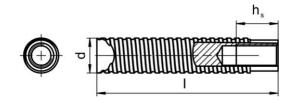
Les instructions d'utilisation peuvent être consultées en utilisant le lien dans le tableau des instructions d'utilisation ou le code QR/lien dans le tableau de la page web Hilti.

Mode d'emploi (IFU)

Matériau			
Mortier d'injection/Fixation		IFU Hilti HIT-MM PLUS	1
Distributeur	<u>IFU HDM</u>	IFU HDE 500-22	<u>IFU HDE 500-A12</u>

Lien vers la page web de Hilti

Mortiers d'injection / Distributeur / Tige filetée									
HIT MM PLUS	HDE 500-22	HDE 500-A12	HDM 500	<u>HAS-U</u>	HIS-N				
回溯 (B)交影 (C) (B) (G)		回祭(回 (元)(元) (日)(元)							


Dimensions spéciales des fixations

Propriétés mécaniques et dimensions HAS-U

Les propriétés mécaniques et les dimensions des tiges filetées sont normalisées et peuvent être extraites de l'ATE figurant dans le tableau des agréments/certificats.

Dimensions HIS-N (R)

Taille de l'ancre			M8	M10	M12
Diamètre de l'élément	d	[mm]	12,5	16,5	20,5
Longueur de l'élément	L	[mm]	90	110	125
Longueur d'engagement du filetage ; min - max	hs	[mm]	8-20	10-25	12-30

Propriétés mécaniques

Qualité des matériaux

Partie	Matériau
Fers à béton	Fers à béton et tiges déroulées de classe B ou C selon NDP ou NCL de l'EN 1992-1-1

4

Charge statique et quasi-statique basée sur ETA-17/0199, données techniques Hilti et conception selon EN 1992-4 Toutes

les données de cette section s'appliquent à

- Réglage correct (voir instructions de réglage)
- Pour un seul ancrage
- Trous percés au marteau
- Pas d'influence de la distance au bord et de l'espacement (voir les tableaux détaillés des réglages avec les distances caractéristiques)
- Épaisseur minimale du matériau de base, telle que spécifiée dans le tableau de la présente section
- Profondeur d'encastrement, comme spécifié dans le tableau de cette section
- Matériau d'ancrage, tel que spécifié dans les tableaux de la présente section
- Béton C 20/25
- Plage de température en service I
 (température minimale du matériau de base -40°C, température maximale du matériau de base à long terme/à court terme : +24°C/40°C)

Profondeur d'enfouissement et épaisseur du matériau de base

Taille de l'ancre HAS-U (A4))			M8			M10			M12			M16	
Profondeur d'encastrement	hef	[mm]	60	80	96	60	100	120	70	120	144	80	160	192
Épaisseur du matériau de base	h	[mm]	100	110	126	100	130	150	100	150	174	116	196	228

Profondeur d'enfouissement et épaisseur du matériau de base

Barre d'armature B500 Taille B			8	10	12	13	14	16
Profondeur d'encastrement	hef	[mm]	80	90	110	120	125	145
Épaisseur du matériau de base	h	[mm]	110	120	142	156	161	185

Charges recommandées

Béton non fi	ssuré			ETA-17/0199											
Taille de l'an	cre			M8 M1			M10		M12			M16			
Tonoion	HAS-U 5.8	Nrec	[kN]	5,4	7,2	8,6	6,7	11,2	13,5	9,4	16,1	19,4	14,4	28,7	34,5
Tension HAS-U A4		[kN]	5,4	7,2	8,6	6,7	11,2	13,5	9,4	16,1	19,4	14,4	28,7	34,5	
Cignillomont	HAS-U 5.8	Vrec	Vrec [kN]		5,2		8,3		12,0			22,4			
Cisaillement HAS-U A4			[kN]		5,9			9,3			13,5			25,2	

Charges recommandées

Béton non fissuré			Données tec	hniques Hilti	i					
Barres d'armature B	8	10	12	13	14	16				
Tension	Nrec	[kN]	9,6	13,5	19,7	23,3	26,2	34,7		
Cisaillement	Vrec	[kN]	6,7	10,5	14,8	17,4	20,0	26,2		

Informations sur les réglages

Plage de température d'installation :

- 5°C à+ 40 °C

Plage de température de service

Le mortier d'injection Hilti HIT-HIT-MM PLUS avec tige d'ancrage peut être appliqué dans les plages de température indiquées cidessous. Une température élevée du matériau de base peut entraîner une réduction de la résistance de l'adhérence.

Plage de température	Température du matériau de base	Température maximale à long terme du matériau de base	Température maximale à court terme du matériau de base
Plage de température I	- 40 °C à+ 40 °C	+ 24 °C	+ 40 °C
Plage de température II	- 40 °C à+ 80 °C	+ 50 °C	+ 80 °C

Température maximale à court terme du matériau de base

Les températures élevées à court terme du matériau de base sont celles qui se produisent sur de brefs intervalles, par exemple à la suite d'un cycle diurne.

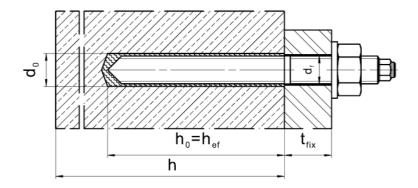
Température maximale à long terme du matériau de base

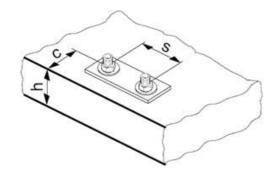
Les températures élevées à long terme des matériaux de base sont à peu près constantes sur de longues périodes.

Temps de travail et temps de durcissement a)

Température du matériau de base	Durée maximale de fonctionnement	Temps de durcissement minimum
Т	twork	tcure a)
-5 °C< T≤ 0 °C	10 min	12 h
0 °C< T≤ 5 °C	10 min	5 h
5 °C< T≤ 10 °C	8 min	2,5 h
10 °C < T≤ 20 °C	5 min	1,5 h
20 °C < T≤ 30 °C	3 min	45 min
30 °C < T≤ 40 °C	2 min	30 min

a) Les données relatives au temps de durcissement ne sont valables que pour un matériau de base sec. Dans le cas d'un matériau de base humide, le temps de durcissement doit être doublé.

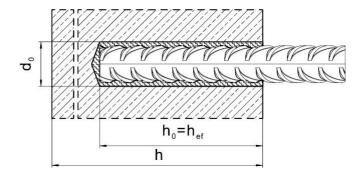


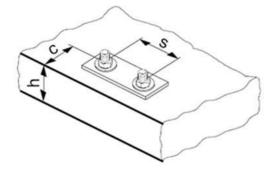

Détails des réglages pour HAS-U

Taille de la tige filetée			M8	M8 M10 M12				
Diamètre nominal de l'élément	d	[mm]	8	10	12	16		
Diamètre nominal du foret	d0	[mm]	10	12	14	18		
Diamètre maximal de trou de dégagement dans l'appareil	df	[mm]	9	12	14	18		
Profondeur d'ancrage effective	hef,min=h0	[mm]	60	60	70	80		
(= profondeur du trou de forage) ^{a)}	hef,max=h0	[mm]	96	120	144	192		
Epaisseur minimum du matériau de base	hmin	[mm]	hef+	30 mm≥ 100 mm	l	hef + 2d0		
Couple maximal b)	Tmax	[Nm]	10	20	40	80		
Espacement minimal	smin	[mm]	40	50	60	80		
Distance minimale entre les bords	cmin	[mm]	40	50	60	80		
Distances caractéristiques								
Espacement pour rupture par fendage	scr,sp	[mm]		2 cc	r,sp			
			1,0⋅ hef	pour _{h/hef} ≥ 2,00	h/h _{ef} -			
Distance au bord pour rupture par fendage c)	ccr,sp	[mm]	4,6· hef - 1,8· h					
			2,26· hef	pour _{h/hef} ≤ 1,3	1,	0·h _{ef} 2,26·h _{ef} c _{cr,sp}		
Espacement pour la rupture du cône de béton d)	scr,N	[mm]		2 cc	cr,N			
Distance au bord pour rupture en cône de béton d	ccr,N	[mm]		1,5	hef			

Pour un espacement (distance au bord) inférieur à l'espacement caractéristique (distance au bord caractéristique), les charges de calcul doivent être réduites.

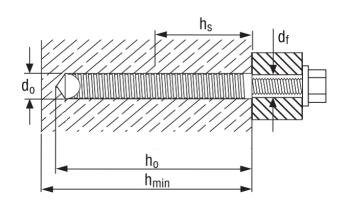
- a) hef,min≤ hef≤ hef,max (hef: profondeur d'enfouissement)
- b) Moment de couple maximal pour éviter un éclatement lors de l'installation avec un espacement minimal et une distance au bord.
- c) h : épaisseur du matériau de base (h≥ hmin)
- d) La distance caractéristique du bord pour la rupture du cône de béton dépend de la profondeur d'enfoncement hef et de la résistance de l'adhérence. La formule simplifiée donnée dans ce tableau est prudente.





Détails de mise en place des barres d'armature

Barres d'armature B500 Taille B			φ8	φ 10	φ.	12	φ 13	φ 14	φ 16
Diamètre	φ	[mm]	8	10	1	2	13	14	16
Profondeur d'enfouissement effective et profondeur du trou de forage	hef=h0	[mm]	80	90	1	10	120	125	145
Diamètre nominal du foret	d0	[mm]	10 / 121)	12 / 141)	(14) 1)	(16) 1)	18	18	20
Epaisseur minimale de l'élément en béton	hmin	[mm]	_{hef} + 30 ≥ 100 mm			hef + 2-d0			
Espacement minimal	smin	[mm]	40 50		6	0	70	70	80
Distance minimale entre les bords	cmin	[mm]	40	45	4	5	50	50	50


¹⁾ L'une ou l'autre des deux valeurs données peut être utilisée.

Détails du réglage pour HIS-N

Taille de tige filetée			M8	M10	M12
Diamètre nominal du foret	d0	[mm]	14	18	22
Diamètre maximal de l'orifice de dégagement dans l'appareil	df	[mm]	9	12	14
Profondeur d'ancrage effective	h0	[mm]	90	110	125
Épaisseur minimale du matériau de base	hmin	[mm]	120	140	170
Longueur d'engagement du filetage ; min - max	hs	[mm]	8-20	10-25	12-30
Couple maximal	Tmax	[Nm]	10	20	40
Espacement minimal	smin	[mm]	60	75	90
Distance minimale entre les bords	cmin	[mm]	40	45	55

Matériel de forage et d'installation

Pour des informations détaillées sur l'installation, voir le mode d'emploi fourni avec le produit.

Perforateur (avec ou sans fil)		TE 2 à TE 70
Appareil à injection de résine	Table 27	HDE HDM
Autres outils		Pompe soufflante, pistolet à air comprimé, écouvillons métalliques
		Foret béton TE-CX, TE-YX, TE-C, TE-Y
	1923	Bouchon de piston

RESINE D'INJECTION HIT- MM PLUS

Fiche technique du produit Sur maçonnerie

Mise à jour : octobre 2024

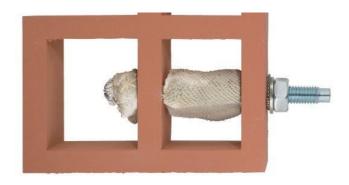
Mortier d'injection HIT-MM Plus

Conception des ancrages (EOTA TR 054) / Tiges et manchons / Maçonnerie

Système de mortier injecté

Hilti HIT-MM Plus

Cartouche de 300 ml (également disponible en 500 ml)


Tiges
d'ancrage:
HAS-U
HAS
HAS-U A4
HAS A4 HAS-U HDG HAS-U HCR (M8-M12)
HIT-IC

(M8-M12)

Tamis: HIT-SC (16-22)

Avantages

- Fixation par injection chimique pour tous les types de matériaux de base: Briques creuses et pleines en terre cuite, briques silicocalcaires, blocs de béton normaux et légers, le béton léger aéré, pierres naturelles
- Mortier hybride à deux composants
- Durcissement rapide
- Profondeur d'enfoncement et épaisseur de fixation flexibles
- Manipulation polyvalente et conventionnelle
- Propre et simple d'utilisation
- Faible distance entre les bords et espacement des ancrages
- Rapport de mélange toujours correct

Matériau de base

Brique pleine Brique creuse

Conditions de charge

Statique/ quasi-statique

Conditions d'installation

Perforateur

Autres informations

Tests sur site

Agréments/certificats liés et instructions d'utilisation

Agréments / Certificats

Numéro d'approbation.	Application / condition de chargement	Autorité / Laboratoire	Date d'émission
ETA-16/0239	Statique et quasi-statique	DIBt, Berlin	19-10-2023

Les instructions d'utilisation peuvent être consultées en utilisant le lien dans le tableau des instructions d'utilisation ou le code QR/lien dans le tableau de la page web Hilti.

Mode d'emploi (IFU)

Matériau								
Mortier d'injection /Fixation	IFU Hilti HIT-MM PLUS							
Distributeur	<u>IFU HDM</u>	<u>IFU HDE 500-22</u>	<u>IFU HDE 500-A12</u>					

Lien vers la page web de Hilti

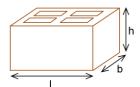
Mortiers d'injection /	Distributeur		
HIT MM PLUS	HDE 500-22	HDE 500-A12	HDM 500
Tige filetée / mancho	n		
<u>HAS-U</u>	<u>HAS</u>	HIT-IC	HIT-SC
奥越奥			風織風

Propriétés mécaniques

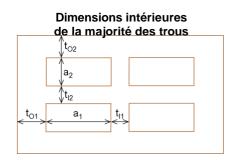
Propriétés mécaniques HAS-U /HAS/ HIT-IC

Les propriétés mécaniques des tiges filetées et des manchons sont normalisées et peuvent être obtenues auprès de l'ATE dont la liste figure dans le tableau des agréments et certificats.

Mise à jour : Oct-



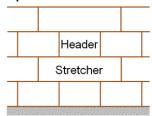
Types de briques et propriétés


Instructions relatives à ces données techniques

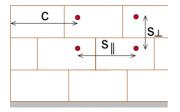
- Identifiez/choisissez votre brique (ou type de brique) et ses propriétés géométriques/physiques dans les tableaux suivants.
 Des informations sur les critères de bordure et d'espacement sont disponibles dans les pages suivantes.
- Les pages référencées dans la dernière colonne du tableau ci-dessous contiennent les charges de résistance de conception pour la rupture par arrachement de l'ancrage, la rupture de la brique et la rupture locale de la brique pour chaque brique respective. Notez que les données affichées dans ces tableaux ne sont valables que pour les ancrages simples dont la distance au bord est telle que la capacité de charge n'en est pas influencée. Pour les autres cas non couverts, reportez-vous à l'ETA-16/0239 ou contactez l'équipe d'ingénierie de Hilti.
- Les charges de résistance fournies par ce manuel de données techniques ne sont valables que pour une même unité de maçonnerie (briques creuses) ou pour des unités constituées du même matériau de base avec des dimensions et une résistance à la compression égales ou supérieures (briques pleines). Pour les autres cas, des essais sur site doivent être effectués.

Dimensions des briques extérieures

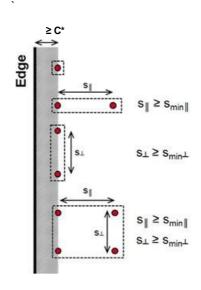
Briques génériques


Types de briques et propriétés

Code briqu e	Donnée s	Nom de la brique	Image	Taille [mm]	to [mm]	[mm]	a [mm]	[N/mm²]	ρ [kg/dm ⁽³)]
				Argile	solide				
SC3	ETA	Brique d'argile pleine Mz, 2DF		l: ≥ 240 b:≥ 115 h:≥ 113	-	-	-	12	2,0
			Si	licate de ca	lcium soli	de			
SCS1	ETA	Brique de silice solide KS, 2DF		l: ≥ 240 b:≥ 115 h:≥ 113	-	-	-	12 28	2,0
				Argile c	reuse				
HC1	ETA	Brique creuse en terre cuite Hlz, 10DF		l: 300 b: 240 h: 238	t01: 12 t02: 15	ti1: 11 ti2: 15	_{a1} : 10 _{a2} : 25	12 20	1,4
	Silicate de calcium creux								
HCS1	ETA	Brique creuse de silice KSL, 8DF		l: 248 b: 240 h: 238	t01:34 t02:22	ti1: 11 ti2: 20	a1:52 a2:52	12 20	1,4


Paramètres d'installation de la cheville

Position de la brique :


- Tête (H): La dimension la plus longue de la brique représente la largeur du mur.
- Brancard (S): La dimension la plus longue de la brique représente la longueur du mur.

Espacement et distance des bords :

- c Distance par rapport au bord
- s_∥ Espacement parallèle au joint de lit
- s⊥ Espacement perpendiculaire au joint de lit

Positions d'ancrage autorisées

- Cette fiche technique de produit comprend les données de charge pour les ancrages simples dans la maçonnerie avec une distance au bord égale ou supérieure à \mathbf{c}^* .
- c* est la distance entre la cheville et le bord du mur, de sorte que la capacité de charge de la cheville ne soit pas influencée par le bord.
- Espacement minimum entre les ancrages = MAX (3 x $_{\rm hef}$; taille de la brique dans la direction respective). Ceci s'applique à une conception/un calcul manuel (conservateur) d'une plaque de base en utilisant les tableaux de charge de cette fiche technique.
- Pour une conception optimisée ou des cas non couverts par ces données techniques, y compris les groupes d'ancrage, veuillez vous référer à l'ETA-16/0239.

Charge statique et quasi-statique basée sur ETA-16/0239 et conception selon EOTA TR 054 méthode A

Toutes les données de cette section s'appliquent à :

- Réglage correct (voir instructions de réglage)
- Pour un seul ancrage
- Les ancrages sont conçus sous la responsabilité d'un ingénieur expérimenté en matière d'ancrages et de travaux de maçonnerie.
- Des notes de calcul et des dessins vérifiables sont préparés en tenant compte des charges à ancrer. La position de l'ancrage est indiquée sur les dessins de conception (par exemple, position de l'ancrage par rapport aux supports, etc.)
- Distance au bord c≥ c*. Pour d'autres applications, voir ETA-16/0239.
- Sens d'installation -horizontal (maconnerie)
- Perçage de trous en mode marteau dans des briques pleines et de trous en mode rotatif dans des briques creuses
- Catégorie d'utilisation : structure sèche ou humide
 - d/d Installation et utilisation dans des structures soumises à des conditions intérieures sèches
 - w/d Installation dans un substrat humide et utilisation dans des structures soumises à des conditions intérieures sèches
 w/w Installation et utilisation dans des structures soumises à des conditions environnementales humides
- Température dans le matériau de base lors de l'installation brique pleine : +5° C à +40° C
- Température du matériau de base lors de la pose des briques creuses : 0° C à +40° C
- Catégorie d'utilisation: Température de service
 - Ta: -40 °C à +40 °C, (température maximale à long terme/à court terme du matériau de base: +24 °C/40 °C)
 - Tb: -40 °C à +80 °C,(température maximale du matériau de base à long/ court terme: +50 °C/80 °C)

Résistances à la traction - Rupture par arrachement de l'ancrage, rupture de la brique et rupture locale de la brique au niveau de l'ancrage, de l'ancrage et de la brique. distance au bord (c≥ c*) pour les applications à ancrage unique

				fh	w/w et w/d		d/d	
Type de	Taille de l'ancre		hef [mm]	[N/mm²]	Та	Tb	Та	Tb
charge						Charg	es [kN]	
T	SC3 - Brique en terre cuite Mz, 1DF (données ETA)							
	HAS-U /HAS	M8, M10, M12	80	12	1,0	0,8	1,0	0,8
	HIT-IC	M8	80	12	1,0	0,8	1,0	0,8
NRd,p= NRd,b (c ≥ 115 mm)	1111-10	M10, M12	80	12	1,4	1,2	1,4	1,2
(6 = 1.0)	HAS-U/HAS+ HIT-SC	M8, M10, M12	80	12	1,4	1,2	1,4	1,2
	HIT-IC+ HIT-SC	M8, M10, M12	80	12	1,4	1,2	1,4	1,2
9	SCS1 - Brique de silice solide KS, 2DF (données ETA)							
	HAS-U/HAS, HIT-IC	M8, M10, M12	80	12	1,8	1,6	2,0	1,6
NRd,p= NRd,b				28	2,8	2,4	2,8	2,4
(c ≥ 115 mm)	HAS-U/HAS +HIT-SC	M8, M10, M12	80	12	1,4	1,0	1,8	1,6
	HIT-IC + HIT-SC			28	2,0	1,8	2,6	2,4
	HC1 - Brique creuse en terre cuite HIz, 10DF (données ETA)							
NRd,p= NRd,b	HAS-U/HAS+ HIT-SC,	M8, M10, M12	80	12	1,0	0,8	1,0	0,8
(c ≥ 150 mm)	HIT-IC + HIT-SC	IVIO, IVITO, IVITZ	00	20	1,2	1,0	1,2	1,0
Ţ.	HCS1 - Brique creuse de KSL, 8DF (données ETA)							
NRd,p= NRd,b	HAS-U/HAS+ HIT-SC,	M8, M10, M12	80	12	1,0	0,8	1,0	0,8
(c ≥ 125 mm)	HIT-IC + HIT-SC	1010, 10110, 1011Z	00	20	1,4	1,2	1,4	1,2

En raison de la grande variété de briques, des essais sur site doivent être réalisés pour déterminer les valeurs de charge pour toutes les applications en dehors des matériaux de base et / ou des conditions de mise en œuvre mentionnés cidessus.

Tests sur site

Pour les autres briques en maçonnerie pleine ou creuse, non couvertes par l'ATE Hilti HIT-MM Plus ou ce manuel de données techniques, la résistance caractéristique peut être déterminée par des essais de traction sur site (essais d'arrachement ou essais de charge d'épreuve), conformément à la norme EOTA TR 053.

Pour l'évaluation des résultats des essais, la résistance caractéristique peut être obtenue en tenant compte du facteur β , qui prend en considération les différentes influences du produit.

Le facteur β pour les types de briques couverts par l'ETA Hilti HIT-MM Plus est indiqué dans le tableau suivant. Le facteur β est multiplié par la charge de traction caractéristique mesurée lorsque la résistance à la traction caractéristique NRk est évaluée par des essais sur site. La résistance au cisaillement caractéristique VRk peut également être directement dérivée de NRk. Pour une procédure détaillée, voir EOTA TR053

Catégories d'utilisation	w/w e	t w/d¹)	d/d ¹⁾			
Plage de température		(Ta) 1)	(Tb) 1 ⁾	(Ta) 1 ⁾	(Tb) 1 ⁾	
Matériau de base	Ancre	Facteur _{βE}	_{TA} essai sur cha	ntier sous char	ge de traction	
Drigue d'araile	HAS-U/HAS ou HIT-IC					
Brique d'argile pleine EN 771-2	HAS-U /HAS+ HIT-SC	0,94	0,81	0,94	0,81	
pionio EN 7712	HIT-IC+ HIT-SC					
Brique solide de silicate de	HAS-U /HAS ou HIT-IC	0,93	0,82	0,94	0,82	
calcium EN 771-2	HAS-U/HAS+ HIT-SC	0,66	0,60	0,88	0.80	
Galoidin 2117772	HIT-IC+ HIT-SC	0,00	0,00	0,00	0,80	
Brique creuse en	HAS-U/HAS+ HIT-SC	0,94	0,81	0,94	0,81	
terre cuite EN 771- 1	HIT-IC+ HIT-SC	0,94	0,61	0,94	0,81	
Brique creuse en silicate de	HAS-U/HAS+ HIT-SC	0,66	0,60	0,99	0.80	
calcium EN 771-2	HIT-IC+ HIT-SC	0,00	0,00	0,99	0,00	

¹⁾Ta / Tb, paramètres d'ancrage w/w et d/d, tels que définis dans les pages précédentes

Informations sur les réglages

Plage de température d'installation :

Maçonnerie pleine : 5°C à +40°C Maçonnerie creuse : 0°C à +40°C

Plage de température de service

Le mortier d'injection Hilti HIT-HY MM+ avec tiges d'ancrage peut être appliqué dans les plages de température indiquées cidessous. Une température élevée du matériau de base entraîne une réduction de la résistance de l'adhérence.

Plage de température	Température du matériau de base	Température maximale à long terme du matériau de base	Température maximale à court terme du matériau de base	
Plage de température I	-40 °C à+ 40 °C	+ 24 °C	+ 40 °C	
Plage de température II	-40 °C à+ 80 °C	+ 50 °C	+ 80 °C	

Température maximale à court terme du matériau de base

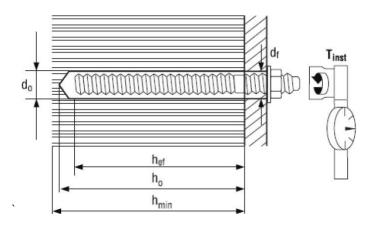
Les températures élevées à court terme du matériau de base sont celles qui se produisent sur de brefs intervalles, par exemple à la suite d'un cycle diurne.

Température maximale à long terme du matériau de base

Les températures élevées à long terme des matériaux de base sont à peu près constantes sur de longues périodes.

Temps de travail et temps de durcissement b)

Température de la matériau de base	Durée maximale de fonctionnement	Temps de durcissement minimum		
Т	twork	tcure ^{b)}		
0 °C< T≤ 5 °C a)	10 min ^{a)}	6 (h) a ⁾		
5 °C< T≤ 10 °C	8 min	3 h		
10 °C < T≤ 20 °C	5 min	2 h		
20°C< T≤ 30 °C	3 min	60 min		
30 °C < T≤ 40 °C	2 min	45 min		


a) Pour les briques creuses uniquement ;

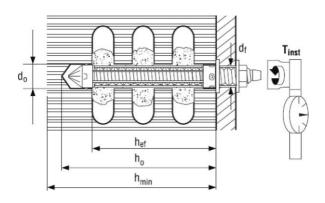
b) Les données relatives au temps de durcissement ne sont valables que pour un matériau de base sec. Pour les matériaux à base humide, les temps de durcissement doivent être doublés.

Détails de mise en place des briques pleines avec HAS-U/HAS

				HAS-U/HAS	
Taille de l'ancre			M8	M10	M12
Manchon de tamisage		HIT-SC	-	-	-
Diamètre nominal du foret	d0	[mm]	10	12	14
Ancrage efficace et profondeur du trou de forage	hef= h0	[mm]	80	80	80
Épaisseur minimale de la paroi	hmin	[mm]	115	115	115
Diamètre maximal de l'orifice de dégagement dans l'appareil	df	[mm]	9	12	14
Moment du couple maximal	Tmax	[Nm]	5	8	10
Distance entre les bords	Cmin=Ccr	[mm]		115	
Espacement -	Smin II= Scr II	[mm]	240		
Lapacement	Smin ⊥= Scr ⊥	[mm]	115		

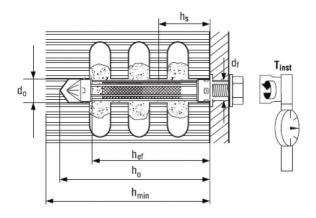
Détails de mise en place des briques pleines avec HIT-IC

			HIT-IC			
Taille de l'ancre			M8	M10	M12	
Tamis		HIT-SC	-	-	-	
Diamètre nominal du foret	d0	[mm]	14	16	18	
Ancrage efficace et profondeur du trou de forage	hef= h0	[mm]	80	80	80	
Épaisseur minimale de la paroi	hmin	[mm]	115	115	115	
Diamètre maximal de l'orifice de dégagement dans l'appareil	df	[mm]	9	12	14	
Longueur de l'engagement du boulon	hs	[mm]	875	1075	1275	
Couple maximal	Tmax	[Nm]	5	8	10	
Distance entre les bords	Cmin=Ccr	[mm]	115			
Espacement	Smin II= Scr II	[mm]	240			
	Smin ⊥= Scr J	- [mm]	115			



Mise à jour : Oct-

Détails du montage des briques creuses pour HAS-U/HAS


			HAS-U/HAS+ HIT-SC			
Taille de l'ancre				M8	M10	M12
Tamis			HIT-SC	16x85	16x85	18x85
Diamètre nominal du foret		d0	[mm]	16	16	18
Profondeur d'ancrage effective		hef	[mm]	80	80	80
Profondeur du trou		h0	[mm]	95	95	95
Épaisseur minimale de la paroi		hmin	[mm]	240	240	240
Diamètre maximal de l'orifice de dégagement dans l'appareil		df	[mm]	9	12	14
Couple		Tmax	[Nm]	3	4	6
Distance entre les bords		Cmin=Ccr	[mm]	150		
Espacement	HC1 - Brique creuse en terre cuite HIz, 10DF	Smin II= Scr II	[mm]	300		
		Smin ⊥= S c r ⊥	[mm]	240		
Distance entre les bords		Cmin=Ccr	[mm]	125		
Espacement	HCS1 - Brique creuse de silicate KSL, 8DF	Smin II= Scr II	[mm]	248		
	ooa.o 1.02, ob1	Smin = Scr =	[mm]	240		

Détails du montage des briques creuses pour HIT-IC

			HIT-IC+ HIT-SC			
Taille de l'ancre					M10	M12
Tamis			HIT-SC	16x85	18x85	22x85
Diamètre nominal du foret		d0	[mm]	16	18	22
Ancrage efficace et profondeur du trou de forage		hef	[mm]	80	80	80
Profondeur du trou		h0	[mm]	95	95	95
Épaisseur minimale de la paroi		hmin	[mm]	240	240	240
Diamètre maximal de l'orifice de dégagement dans l'appareil		df	[mm]	9	12	14
Longueur de l'engagement du boulon		hs	[mm]	875	1075	1275
Couple		Tmax	[Nm]	3	4	6
Distance entre les bords		Cmin=Ccr	[mm]	150		
Espacement	HC1 - Brique creuse en terre cuite Hlz, 10DF	Smin II= Scr II	[mm]	300		
		Smin ⊥= Scr ⊥	[mm]	240		
Distance entre les bords		Cmin=Ccr	[mm]	125		
Espacement	HCS1 - Brique creuse de silice KSL, 8DF	Smin II= Scr II	[mm]	248		
	omoo ROL, obi	Smin ⊥= Scr ⊥	[mm]	240		

Matériel de forage et d'installation

Pour des informations détaillées sur l'installation, voir le mode d'emploi fourni avec le produit.

Perforateur (avec ou sans fil)	TE 2 à TE 30
Appareil à injection de résine	HDE HDM
	Foret béton TE-CX, TE-C
Autres outils	Pompe soufflante, pistolet à air comprimé, écouvillons métalliques