

CHEVILLE PLASTIQUE HRD

Cheville plastique HRD pour ancrage dans le béton et la maçonnerie

CHEVILLE PLASTIQUE HRD POUR ANCRAGE DANS LE BÉTON ET LA **MAÇONNERIE**

Versions de cheville

- HRD-C version acier au carbone tête fraisée
- HRD-H version acier au carbone tête hexagonale
- HRD-K version acier au carbone tête hexagonale sans collerette
- HRD-P version acier au carbonne tête plate

ETE ETE-07/0219 (fixation multiple non structurelle)

Résistance au feu GS 3.2/10-157-1

Les homologations et procès-verbaux d'essais ne peuvent s'appliquer qu'aux produits sélectionnés uniquement ; reportez-vous aux documents pour plus de détails.

Béton non fissuré Maçonnerie pleine

Maçonnerie creuse

Béton cellulaire

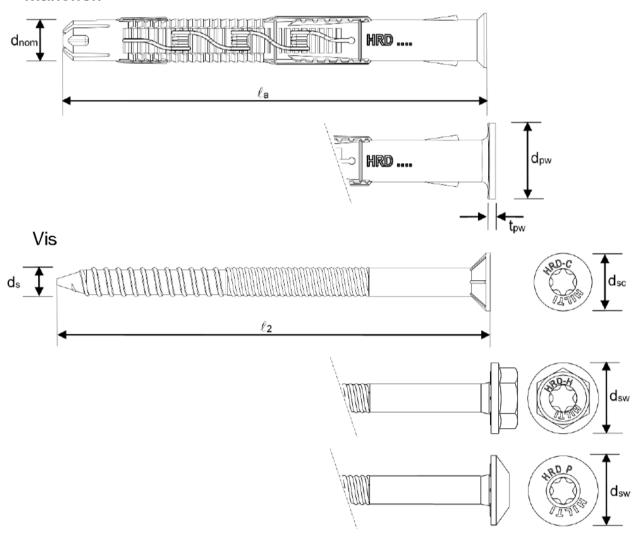
34
10.2
593
1/3

Caractéristic	ques		8	10
f (N1/mm2)	Décistance nominale à la traction du filatore	Acier au carbone	600	600
f _{u,k} (N/mm²)	Résistance nominale à la traction du filetage	Inox A4	580	630
(A) () () () () () () () () ()		Acier au carbone	480	480
f _{y,k} (N/mm²) Limite d'élasticité du fileta	Limite d'élasticité du filetage	Inox A4	450	480
A (as w2)	Section résistante	Acier au carbone	22,9	35,3
A _s (mm²)	Section resistante	Inox A4	22,9	35,3
M/ (ma ma 3)	Moment de résistance	Acier au carbone	15,5	29,5
W (mm³)	Moment de resistance	Inox A4	15,5	29,5
M0 (N1 m)	Moment de flevier admissible (FLLI)	Acier au carbone	11,1	21,3
$M^0_{Rd,s}$ (N.m)	Moment de flexion admissible (ELU)	Inox A4	10,8	22,3

CODES ARTICLES ET DIMENSIONS

Dimensions	HRD-H	HRD-HR	HRD-C	HRD-CR2	HRD-CR	HRD-K	HRD-P	HRD-PR2
8x60	-	-	202341	-	2022681	-	-	-
8x80	-	-	202342	-	2022682	-	-	-
8x100	-	-	202343	-	2022683	-	-	-
8x120	-	-	202344	-	2022684	-	-	-
8x140	-	-	202345	-	2022685	-	-	-
10x60	423870	423888	423859	423892	423885	423878	423883	423907
10x80	423871	423889	423860	423893	-	423879	423884	423908
10x80 (10)	423916	-	-	-	-	-	-	-
10x100	423872	423890	423861	423894	423886	423880	2009873	-
10x100 (10)	423918	-	423917	-	-	-	-	-
10x120	423873	-	423862	423895	-	423881	-	-
10x140	423874	423891	423863	423896	423887	423882	2009875	-
10x140 (10)	423920	-	423919	-	-	-	-	-
10x160	423875	-	423864	-	-	-	-	-
10x180	423876	-	423865	-	-	-	-	-
10x180 (10)	-	-	423921	-	-	-	-	-
10x200	423877	-	423866	-	-	-	-	-
10x230	-	-	423867	-	-	-	-	-
10x270	-	-	423868	-	-	-	-	-
10x310	-	-	423869	-	-	_	-	-

MATIÈRE


Туре	Matière	Protection
Manchon	Polyamide, couleur rouge	
HRD-C, -H, -K, -P	Acier au carbone	galvanisé à chaud
HRD-CR2, -PR2	Acier inoxydable A2	
HRD-CR, -HR	Acier inoxydable A4	

HRD

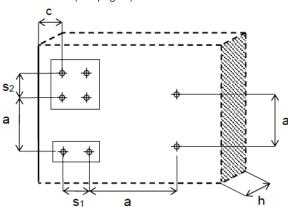
DIMENSIONS DE LA CHEVILLE

Taille de la cheville		8	10
Epaisseur minimum de la pièce à fixer	t _{fix,min} (mm)	0	0
Epaisseur maximum de la pièce à fixer	t _{fix,max} (mm)	90	260
Diamètre du manchon	d _{nom} (mm)	8	10
Longueur minimum du manchon	$\ell_{ exttt{1,min}}$ (mm)	60	60
Longueur maximum du manchon	$\ell_{\scriptscriptstyle 1, max}$ (mm)	140	310
Diamètre de la rondelle plastique	d _{pw} (mm)	-	17,5
Epaisseur de la rondelle plastique	t _{pw} (mm)	-	2
Diamètre de la vis	d _s (mm)	6	7
Longueur minimum de la vis	$\ell_{2,min}$ (mm)	65	65
Longueur maximum de la vis	$\ell_{ m 2.max}$ (mm)	145	315
Diamètre de la tête (fraisée) de la vis	d _{sc} (mm)	11	14
Diamètre de la tête (hexagonale) de la vis	d _{sw} (mm)	-	17,5

Manchon

DONNÉES DE POSE

	Diamètre nominal mèche	Profondeur de perçage	Profondeur d'implantation nominale	Diamètre trou de passage pour tête hexagonale	Diamètre trou de passage pour tête fraisée
	d _o (mm)	հ ₁ (mm)	h _{min} (mm)	d _f (mm)	d _f (mm)
		60	50		
8	8	-	-	-	8,5
		-	-		
		60	50		
10	10	80	70	12	11
		1001)	901)		


¹⁾ Pour fixation dans le béton cellulaire

CONDITIONS D'IMPLANTATION

Caractéristiques			8	10	0
Profondeur d'implantation no	minale	h _{nom} (mm)	50	50	70
Epaisseur minimum du	Béton Béton mince	h _{min} (mm) h _{min} (mm)	100	100 40	120 -
matériau support	Maçonnerie ¹⁾	h _{min} (mm)		115 - 300	
	Béton C12/15	s _{min} (mm) pour c ≥ (mm)	140 70	70 140 ²⁾	70 140 ²⁾
Entraxe minimum	Béton ≥ C16/20	s _{min} (mm) pour c ≥ (mm)	100 50	50 100 ²⁾	50 100 ²⁾
	Maçonnerie et béton cellulaire	a _{min} (mm) s _{min1} (mm) s _{min2} (mm)	250 200 (120³) 400 (240³)	250 100 100	250 100 100
	Béton C12/15	c _{min} (mm) pour s ≥ (mm)	70 140	70 210 ²⁾	70 210 ²⁾
Distance au bord minimum	Béton ≥ C16/20	c _{min} (mm) pour s ≥ (mm)	50 100	50 150 ²⁾	50 150 ²⁾
	Maçonnerie et béton cellulaire	c _{min} (mm)	100 (60 ³⁾)	100	100
Entraxe caractéristique	Béton C12/15	s _{cr,N} (mm)	68	90	135
Littiane varacteristique	Béton ≥ C16/20	s _{cr,N} (mm)	62	80	125
Distance au bord caractéristique	Béton C12/15 Béton ≥ C16/20	c _{cr,N} (mm) c _{cr,N} (mm)	140 100	140 100	140 100

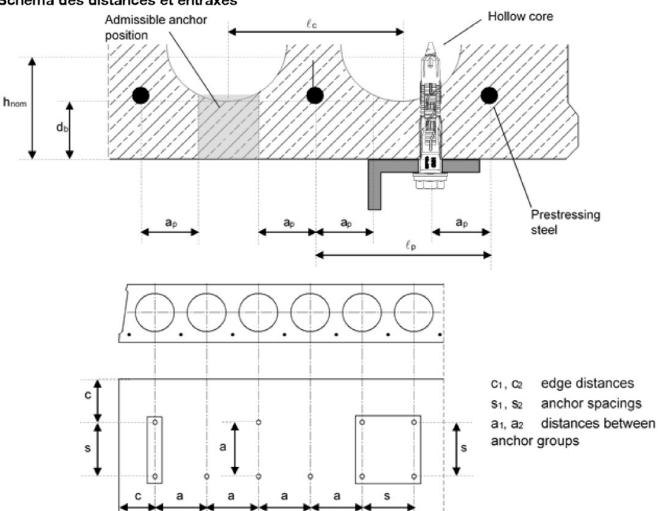
¹) L'épaisseur minimum du matériau support en maçonnerie dépend du type de brique. Voir les préconisations de type de brique dans le tableau page 6.

³⁾ Uniquement pour la brique "Doppio Uni" et "Mattone" (voir page 6).

TEMPÉRATURE DE LA MAÇONNERIE PENDANT LA VIE DE L'OUVRAGE

Plage de température	Plage de température Température du matériau support		Température à court terme
Unique	- 40 °C à + 80 °C	+ 50 °C	+ 80 °C

²⁾ Interpolation linéaire autorisée



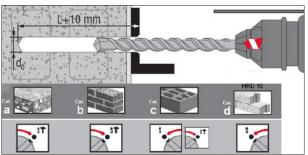
CONDITIONS D'IMPLANTATION POSSIBLE

Position des ancrages possible, distance au bord et entraxe minimum et distance entre groupe d'ancrage dans le béton précontraint

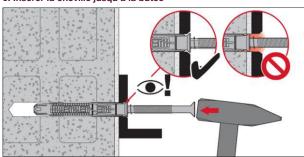
Taille de la cheville		8	10
Epaisseur minimum de la pièce à fixer	h _{nom} ≥ (mm)	-	50
Epaisseur de la semelle inférieure	d _b ≥(mm)	-	25
Entraxe des fers du béton précontraint	I _c ≥ (mm)	-	100
Distance entre les fers du béton précontraint	l _p ≥ (mm)	-	100
Distance entre la position de la cheville et l'acier du béton précontraint	a _p ≥ (mm)	-	50
Distance au bord minimum	c _{min} ≥ (mm)	-	100
Entraxe minimum	s _{min} ≥(mm)	-	100
Distance minimum entre les groupes de chevilles	a _{min} ≥ (mm)	-	100

Schéma des distances et entraxes

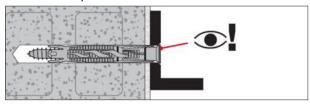
MAÇONNERIES CREUSES HOMOLOGUÉES ET PROPRIÉTÉS

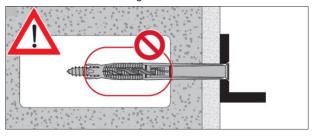

Description	Image	Mode de perçage	Description	Image	Mode de perçage
Brique A Hlz B 12/1,2 Lxpxh (mm) : 300x240x248 h _{min} (mm) : 240		Rotation	Brique B Brique creuse Lxpxh (mm): 210x198x h _{min} (mm): 210		Rotation
Brique C Doppio Uni Lxpxh (mm): 230x120x100 h _{min} (mm): 120	000000	Rotation	Brique D Rojo hydrofugano Lxpxh (mm) : 240x115x50 h _{min} (mm) : 115		Rotation
Brique E Mattone Lxpxh (mm) : 240x180x100 h _{min} (mm) : 180		Rotation	Brique F Hlz 1,2-2DF Lxpxh (mm) : 240x115x113 h _{min} (mm) : 115	000000000	Rotation percussion
Brique G Hlz 1,0-2DF Lxpxh (mm) : 240x115x113 h _{min} (mm) : 110		Rotation percussion	Brique H VHlz 1,6-2DF Lxpxh (mm) : 240x115x113 h _{min} (mm) : 115		Rotation percussion
Brique I Doppio Uni Lxpxh (mm) : 250x120x190 h _{min} (mm) : 120	0000000 001_100 0000000	Rotation	Brique J Ladrillo perforado Lxpxh (mm) : 240x110x100 h _{min} (mm) : 110	000000	Rotation
Brique K Clinker mediterr. Lxpxh (mm): 240x113x50 h _{min} (mm): 113	000000	Rotation percussion	Brique L Hlz 1,0-9DF Lxpxh (mm) : 372x175x238 h _{min} (mm) : 175		Rotation
Brique M Poroton T8 Lxpxh (mm): 248x365x249 h _{min} (mm): 365		Rotation	Brique N Poroton P700 Lxpxh (mm) : 225x300x190 h _{min} (mm) : 300	00000000000000000000000000000000000000	Rotation
Brique creuse en calcaire d	conformément à l'El	N 771-2			
Brique O KSL 12/1,4 Lxpxh (mm) : 240x248x248 h _{min} (mm) : 240		Rotation percussion	Brique P KS L 1,6-2DF Lxpxh (mm) : 240x115x113 h _{min} (mm) : 115	00000	Rotation percussion
Brique Q KS L 1,4-3DF Lxpxh (mm): 240x175x113 h _{min} (mm): 175	0000	Rotation percussion	Brique R KS L R 1,6-16DF Lxpxh (mm) : 480x240x248 h _{min} (mm) : 240	00000	Rotation
Brique S Hbl 2/0,8 Lxpxh (mm) : 497x240x248 h _{min} (mm) : 240		Rotation percussion	Brique T Hbl 1,2-12DF Lxpxh (mm) : 497x175x238 h _{min} (mm) : 175		Rotation

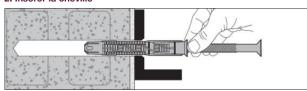
HRD

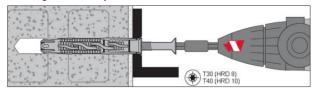

INSTRUCTIONS DE POSE

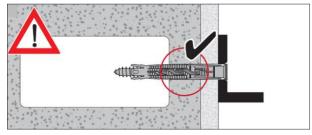
Instructions générales, pour plus d'informations, consulter la notice fournie dans la boîte de chaque produit.


1. Percer


3. Insérer la cheville jusqu'à la butée

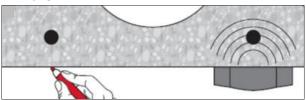

5. Contrôle de la pose


7. Fixation de la rondelle d'origine

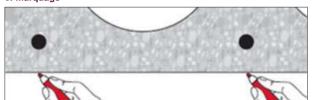

2. Insérer la cheville

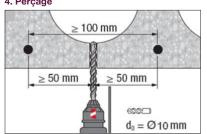
4. Serrage à l'outil de pose

6. Fixation de la rondelle d'origine



Préparation supplémentaire en cas de mise en oeuvre dans les bétons précontraints ou dalles alvéolaires


1. Emplacement des barres précontraintes


2. Marquage

3. Marquage

4. Perçage

HRD

VALEURS PRÉCALCULÉES I CHARGES STATIQUES

Taille de la cheville			8		10	
Profondeur d'implantation nominale		h _{nom} (mm)	50	50	70	90
Béton C12/15		$N_{Rd}(kN)$	1,1	1,7	3,3	-
Beton C12/13		$V_{Rd}(kN)$	5,5	8,5	8,5	-
Béton C16/20 - C50/60		N_{Rd} (kN)	1,7	2,5	4,7	-
B01011 0 10/20 000/00		$V_{Rd}(kN)$	5,5	8,5	8,5	-
Brique pleine en terre cuite	f _b ≥ 20 N/mm ²	F _{Bd} (kN)	0,6	1,2	2)	-
Mz 2,0		Rd (****)		1,81)	2)	-
DIN V 105-100	f _b ≥ 10 N/mm ²	F _{Rd} (kN)	0,48	0,8	2)	-
EN 771-1	. Б — 1.0.1.4	Rd (****)	0, .0	1,21)	2)	-
Brique pleine en silico-calcaire	f _b ≥ 20 N/mm ²	F _{Rd} (kN)	1,0	1,2	2)	-
KS 2,0	Ь	Rd ()	,-	1,81)	2)	-
DIN V 106	f _b ≥ 10 N/mm ²	F _{Rd} (kN)	8,0	0,8	2)	-
EN 771-2	ь тотути	Rd (****)	-,-	1,21)	2)	-
Plac de héten léger	f _b ≥ 20 N/mm ²	F _{Rd} (kN)	-	1,4	2)	-
Bloc de béton léger Vbl 0.9	b , , , , ,	на 🗸	-	2,41)	2)	-
DIN V 18151-100	f _b ≥ 10 N/mm ²	F _{Rd} (kN)	-	1,0	2)	-
EN 771			-	1,81)	2)	-
	$f_b \ge 6 \text{ N/mm}^2$	F _{Rd} (kN)	0,2	-	2)	-
Brique solide italienne Tufo	f _b ≥ n/a	F _{Rd} (kN)	0,56	-	-	-
Brique creuse en terre cuite HIz B 12/1,2 Brique A ³⁾	f _b ≥ 12 N/mm²	F _{Rd} (kN)	0,2	-	-	-
Brique en terre cuite perforée verticalement	f _b ≥ 8 N/mm ²	F _{Rd} (kN)	-	0,6	-	-
HIZ 1,2-2DF	f _b ≥ 10 N/mm ²	F _{Rd} (kN)	-	0,8	-	-
Brique F ³⁾	$f_b \ge 12 \text{ N/mm}^2$	F _{Rd} (kN)	-	0,8	-	-
	$f_b \ge 8 \text{ N/mm}^2$	F _{Rd} (kN)	-	0,16	0,3	-
Brique en terre cuite perforée verticalement	$f_b \ge 10 \text{ N/mm}^2$	F _{Rd} (kN)	-	0,2	0,36	-
HIZ 1,0-2DF	$f_b \ge 12 \text{ N/mm}^2$	F _{Rd} (kN)	-	0,24	0,36	-
Brique G ³⁾	$f_b \ge 20 \text{ N/mm}^2$	F _{Bd} (kN)	_	0,36	0,6	-
Brique en terre cuite perforée verticalement		F _{Rd} (kN)	-	0,8	1,0	-
HIz 1,0-2DF Brique H ³⁾	$f_b \ge 50 \text{ N/mm}^2$	F _{Rd} (kN)	-	1,2	1,4	-
Brique en terre cuite perforée verticalement Poroton T8 Brique M ³⁾	$f_b \ge 6 \text{ N/mm}^2$	F _{Rd} (kN)	-	0,3	0,6	-
brique ivi	f > 0 N/	F (1.N.)		0.40	0.0	
Brique en terre cuite perforée verticalement	$f_b \ge 8 \text{ N/mm}^2$	F _{Rd} (kN)	-	0,48	0,6	-
HIz 1,0-9DF	1 _b = 10 14/111111-	F _{Rd} (kN)	-	0,6	0,6	-
Brique L ³⁾	$f_b \ge 12 \text{ N/mm}^2$	F _{Rd} (kN)	-	0,6	0,8	-
Brique creuse en silico-calcaire KSL 12/1,4 Brique O ³⁾	$f_b \ge 16 \text{ N/mm}^2$ $f_b \ge 12 \text{ N/mm}^2$	F _{Rd} (kN) F _{Rd} (kN)	0,3	0,8	1,2 -	-
NOL 12/1,4 Brique 0	f _b ≥ 8 N/mm ²	E (kN)		0,6		
Brique en terre cuite perforée verticalement	$f_b \ge 10 \text{ N/mm}^2$	F _{Rd} (kN)	_	0,6	_	_
HIz 1,6-2DF Brique P ³⁾	$f_b \ge 10 \text{ N/mm}^2$	F _{Rd} (kN) F _{Rd} (kN)	_	0,8	_	-
Prigue on torre quite newfords continued		F _{Rd} (kN)	_	-	0,8	
Brique en terre cuite perforée verticalement HIz 1,6-2DF	$f_b \ge 10 \text{ N/mm}^2$	F _{Rd} (kN)	_		1,0	_
Brique Q ³	$f_b \ge 10 \text{ N/mm}^2$	F _{Rd} (kN)			1,2	
	$f_b \ge 12 \text{ N/mm}^2$	F _{Rd} (kN)	_	0,36	0,48	_
Brique en terre cuite perforée verticalement	$f_b \ge 10 \text{ N/mm}^2$	F _{Rd} (kN)	_	0,48	0,6	-
	1 - 10 IN/IIIII	I Da (I/I V)		0,40	0,0	-
KSL R 1,6-16DF Brique R ³⁾	$f_b \ge 12 \text{ N/mm}^2$	F _{Rd} (kN)	_	0,6	0,8	_

¹⁾ Valable pour une distance c ≥ 150 mm, interpolation toléré pour les valeurs intermédiaires.

Les valeurs précalculées sont basées sur les tableaux correspondants de l'Evaluation Technique Européene de la cheville plastique HRD (ETE-07/0219 du 28/06/2018). Celui-ci est disponible en téléchargement gratuit sur **www.hilti.fr**. Pour un dimensionnement adapté à votre application, l'utilisation du logiciel PROFIS Cheville ou PROFIS Engineering est recommandée.

²⁾ Données à déterminer sur site, les valeurs de h_{nom} = 50 mm peuvent être appliquées.

³⁾ Description des briques à la page 6.

VALEURS PRÉCALCULÉES I CHARGES STATIQUES

Taille de la cheville			8		10	
Profondeur d'implantation nominale		h _{nom} (mm)	50	50	70	90
Brique creuse en béton léger Hbl B 2/0,8 Brique S ³⁾	f _b ≥ 2 N/mm²	F _{Rd} (kN)	0,12	-	-	-
Bloc creux en béton léger Hbl 1,2-12DF Brique T ³⁾	$f_b \ge 8 \text{ N/mm}^2$ $f_b \ge 10 \text{ N/mm}^2$	$F_{Rd}^{}$ (kN) $F_{Rd}^{}$ (kN)	-	0,2 0,48	0,3 0,8	-
Brique creuse Italienne Poroton P700 Brique N ³⁾	$f_b \ge 20 \text{ N/mm}^2$	F _{Rd} (kN)	0,6	-	-	-
Brique creuse Italienne Dopplo Uni Brique C+I ³⁾	$f_b \ge 28 \text{ N/mm}^2$ $f_b \ge 50 \text{ N/mm}^2$	F _{Rd} (kN) F _{Rd} (kN)	- 0,36 (C)	-	0,24 0,6 (l)	-
Brique creuse Span. Roho hydrofugano Brique D ³⁾	$f_b \ge 6 \text{ N/mm}^2$	F _{Rd} (kN)	0,24			
Brique creuse Span. Ladrillo perforado Brique J ³⁾	f _b ≥ 16 N/mm²	F _{Rd} (kN)	-	0,6	0,8	-
Brique creuse Span. Clinker mediterraneo Brique K ³⁾	f _b ≥ 75 N/mm²	F _{Rd} (kN)	-	-	0,6	-
Brique creuse Brique B ³⁾	f _b ≥ 6 N/mm²	F _{Rd} (kN)	0,20	-	-	-
	AAC2	F_{Rd} (kN)	-	-	0,45	0,45
Béton cellulaire	AAC4	F _{Rd} (kN)	0,21	-	1,0	1,25
Deton Centralie	AAC6	F _{Rd} (kN)	0,21	-	1,0	1,25
	AAO0	Rd (KIV)	0,21		0,751)	2,251)

¹⁾ Valable pour une distance c ≥ 150 mm, interpolation toléré pour les valeurs intermédiaires.

VALEURS PRÉCALCULÉES I CHARGES STATIQUES DANS LE BÉTON

Taille de la cheville				8	10	
Dans les dalles de béton standard					`	
Profondeur d'implantation nominale			h _{nom} ≥ (mm)	50	50	70
		C12/15	$N_{Rd,p}$	1,11	1,66	3,33
Résistance de calcul ultime dans le béton		≥ C16/20	$N_{Rd,p}$	1,66	2,5	4,72
Dans les dalles de béton mince						
Résistance de calcul ultime dans le béton h = 100 mm à 400 mm		C12/15	$N_{Rd,p}$	-	1,38	-
		≥ C16/20	$N_{Rd,p}$	-	1,94	-
Dans les dalles de béton précontraintes						
Résistance de calcul ultime	d _b ≥ 25 mm	≥ C16/20	$N_{Rd,p}$	-	0,33	-
	d _b ≥ 30 mm	≥ C16/20	$N_{Rd,p}$	-	0,83	-
	d _b ≥ 35 mm	≥ C16/20	$N_{Rd,p}$	-	1,38	-
	d _b ≥ 40 mm	≥ C16/20	$N_{_{Rd,p}}$	-	1,94	_

Le calcul de ces valeurs a été effectué avec un coefficient partiel de sécurité γ_{Mc} = 1,8.

Les valeurs précalculées sont basées sur les tableaux correspondants de l'Evaluation Technique Européene de la cheville plastique HRD (ETE-07/0219 du 28/06/2018). Celui-ci est disponible en téléchargement gratuit sur **www.hilti.fr**. Pour un dimensionnement adapté à votre application, l'utilisation du logiciel PROFIS Cheville ou PROFIS Engineering est recommandée.

 $^{^{2)}}$ Données à déterminer sur site, les valeurs de h_{nom} = 50 mm peuvent être appliquées.

³⁾ Description des briques à la page 6.